基于 Transformer 的无监督对比学习在组织病理学图像分类中的应用。
Transformer-based unsupervised contrastive learning for histopathological image classification.
机构信息
College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; College of Computer Science, Sichuan University, Chengdu 610065, China.
Tencent AI Lab, Shenzhen 518057, China.
出版信息
Med Image Anal. 2022 Oct;81:102559. doi: 10.1016/j.media.2022.102559. Epub 2022 Jul 30.
A large-scale and well-annotated dataset is a key factor for the success of deep learning in medical image analysis. However, assembling such large annotations is very challenging, especially for histopathological images with unique characteristics (e.g., gigapixel image size, multiple cancer types, and wide staining variations). To alleviate this issue, self-supervised learning (SSL) could be a promising solution that relies only on unlabeled data to generate informative representations and generalizes well to various downstream tasks even with limited annotations. In this work, we propose a novel SSL strategy called semantically-relevant contrastive learning (SRCL), which compares relevance between instances to mine more positive pairs. Compared to the two views from an instance in traditional contrastive learning, our SRCL aligns multiple positive instances with similar visual concepts, which increases the diversity of positives and then results in more informative representations. We employ a hybrid model (CTransPath) as the backbone, which is designed by integrating a convolutional neural network (CNN) and a multi-scale Swin Transformer architecture. The CTransPath is pretrained on massively unlabeled histopathological images that could serve as a collaborative local-global feature extractor to learn universal feature representations more suitable for tasks in the histopathology image domain. The effectiveness of our SRCL-pretrained CTransPath is investigated on five types of downstream tasks (patch retrieval, patch classification, weakly-supervised whole-slide image classification, mitosis detection, and colorectal adenocarcinoma gland segmentation), covering nine public datasets. The results show that our SRCL-based visual representations not only achieve state-of-the-art performance in each dataset, but are also more robust and transferable than other SSL methods and ImageNet pretraining (both supervised and self-supervised methods). Our code and pretrained model are available at https://github.com/Xiyue-Wang/TransPath.
大规模且标注良好的数据集是深度学习在医学图像分析中取得成功的关键因素。然而,组装如此大规模的标注数据非常具有挑战性,尤其是对于具有独特特征的组织病理学图像(例如,千兆像素图像大小、多种癌症类型和广泛的染色变化)。为了解决这个问题,自监督学习(SSL)可能是一种很有前途的解决方案,它只依赖于未标记的数据来生成信息丰富的表示,并且即使在有限的标注下也能很好地推广到各种下游任务。在这项工作中,我们提出了一种名为语义相关对比学习(SRCL)的新型 SSL 策略,该策略通过比较实例之间的相关性来挖掘更多的正例。与传统对比学习中一个实例的两个视图相比,我们的 SRCL 将具有相似视觉概念的多个正例对齐,从而增加了正例的多样性,从而产生更丰富的表示。我们使用一种混合模型(CTransPath)作为骨干,该模型是通过集成卷积神经网络(CNN)和多尺度 Swin Transformer 架构设计的。CTransPath 在大量未标记的组织病理学图像上进行预训练,这些图像可以作为协作的局部-全局特征提取器,学习更适合组织病理学图像领域任务的通用特征表示。我们在五种下游任务(补丁检索、补丁分类、弱监督全幻灯片图像分类、有丝分裂检测和结直肠腺癌腺体分割)上研究了我们的 SRCL 预训练的 CTransPath 的有效性,涵盖了九个公共数据集。结果表明,我们基于 SRCL 的视觉表示不仅在每个数据集上都达到了最先进的性能,而且比其他 SSL 方法和 ImageNet 预训练(包括监督和自监督方法)更稳健和可迁移。我们的代码和预训练模型可在 https://github.com/Xiyue-Wang/TransPath 上获得。