School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America.
Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil.
PeerJ. 2024 Nov 14;12:e18397. doi: 10.7717/peerj.18397. eCollection 2024.
Unrealistic model assumptions or improper quantitative methods reduce the reliability of data-limited fisheries assessments. Here, we evaluate how traditional length-based methods perform in estimating growth and mortality parameters in comparison with unconstrained bootstrapped methods, based on a virtual population and a case study of seabob shrimp ( Heller, 1862).
Size data were obtained for 5,725 seabob shrimp caught in four distinct fishing grounds in the Southwestern Atlantic. Also, a synthetic population with known parameter values was simulated. These datasets were analyzed using different length-based methods: the traditional Powell-Wetheral plot method and novel bootstrapped methods.
Analysis with bootstrapped ELEFAN (fishboot package) resulted in considerably lower estimates for asymptotic size ( ), instantaneous growth rate (), total mortalities () and values compared to traditional methods. These parameters were highly influenced by estimates, which exhibited median values far below maximum lengths for all samples. Contrastingly, traditional methods (PW method and approach) resulted in much larger estimates, with average bias >70%. This caused multiplicative errors when estimating both and , with an astonishing average bias of roughly 200%, with deleterious consequences for stock assessment and management. We also present an improved version of the length-converted catch-curve method (the iLCCC) that allows for populations with > and propagates the uncertainty in growth parameters into mortality estimates. Our results highlight the importance of unbiased growth estimates to robustly evaluate mortality rates, with significant implications for length-based assessments of data-poor stocks. Thus, we underscore the call for standardized, unconstrained use of fishboot routines.
不切实际的模型假设或不当的定量方法会降低数据有限的渔业评估的可靠性。在这里,我们根据虚拟种群和 seabob 虾(Heller,1862)的案例研究,评估传统的基于长度的方法与无约束自举方法在估计生长和死亡率参数方面的表现。
从南大西洋四个不同的捕捞区获得了 5725 只 seabob 虾的大小数据。此外,还模拟了一个具有已知参数值的合成种群。使用不同的基于长度的方法分析这些数据集:传统的 Powell-Wetheral 图法和新的自举方法。
使用自举 ELEFAN(fishboot 包)进行分析导致渐近大小()、瞬时增长率()、总死亡率()和值的估计值明显低于传统方法。这些参数受估计值的影响很大,所有样本的估计值中位数都远低于最大长度。相比之下,传统方法(PW 方法和 approach)导致的估计值要大得多,平均偏差>70%。这导致在估计和时产生乘法误差,平均偏差约为 200%,对种群评估和管理产生了不利影响。我们还提出了一种改进的长度转换渔获曲线方法(iLCCC),该方法允许具有>的种群,并将生长参数的不确定性传播到死亡率估计中。我们的结果强调了无偏生长估计对稳健评估死亡率的重要性,对数据匮乏的种群的基于长度的评估具有重要意义。因此,我们强调呼吁标准化、无约束地使用 fishboot 例程。