Suppr超能文献

基于基因本体论的蛋白质功能预测的图表示学习的实验分析。

An experimental analysis of graph representation learning for Gene Ontology based protein function prediction.

机构信息

Faculty of Fundamental Sciences, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam.

Department of Information and Communication Engineering, Myongji University, Yongin, Republic of South Korea.

出版信息

PeerJ. 2024 Nov 14;12:e18509. doi: 10.7717/peerj.18509. eCollection 2024.

Abstract

Understanding protein function is crucial for deciphering biological systems and facilitating various biomedical applications. Computational methods for predicting Gene Ontology functions of proteins emerged in the 2000s to bridge the gap between the number of annotated proteins and the rapidly growing number of newly discovered amino acid sequences. Recently, there has been a surge in studies applying graph representation learning techniques to biological networks to enhance protein function prediction tools. In this review, we provide fundamental concepts in graph embedding algorithms. This study described graph representation learning methods for protein function prediction based on four principal data categories, namely PPI network, protein structure, Gene Ontology graph, and integrated graph. The commonly used approaches for each category were summarized and diagrammed, with the specific results of each method explained in detail. Finally, existing limitations and potential solutions were discussed, and directions for future research within the protein research community were suggested.

摘要

理解蛋白质的功能对于破译生物系统和促进各种生物医学应用至关重要。21 世纪初,出现了用于预测蛋白质基因本体论(GO)功能的计算方法,以弥合注释蛋白质数量与新发现的氨基酸序列数量之间的差距。最近,应用图表示学习技术来增强蛋白质功能预测工具的生物网络的研究急剧增加。在这篇综述中,我们提供了图嵌入算法的基本概念。本研究基于四个主要数据类别(即蛋白质-蛋白质相互作用网络、蛋白质结构、基因本体论图和综合图)描述了用于蛋白质功能预测的图表示学习方法。总结了每个类别的常用方法,并以图表形式表示,详细说明了每种方法的具体结果。最后,讨论了现有的局限性和潜在的解决方案,并为蛋白质研究界的未来研究提出了方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8f2/11569786/5034ff7eda26/peerj-12-18509-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验