Forni Maria Fernanda, Pizzurro Gabriela A, Krause Will, Alexander Amanda F, Bridges Kate, Xu Yiting, Justynski Olivia, Gabry Anthony, Camara Niels Olsen Saraiva, Miller-Jensen Kathryn, Horsley Valerie
bioRxiv. 2024 Nov 3:2024.10.30.621159. doi: 10.1101/2024.10.30.621159.
The cellular metabolism of macrophages depends on tissue niches and can control macrophage inflammatory or resolving phenotypes. Yet, the identity of signals within tissue niches that control macrophage metabolism is not well understood. Here, using single-cell RNA sequencing of macrophages in early mouse wounds, we find that, rather than gene expression of canonical inflammatory or resolving polarization markers, metabolic gene expression defines distinct populations of early wound macrophages. Single-cell secretomics and transcriptomics identify inflammatory and resolving cytokines expressed by early wound macrophages, and we show that these signals drive metabolic inputs and mitochondrial metabolism in an age-dependent manner. We show that aging alters the metabolome of early wound macrophages and rewires their metabolism from mitochondria to glycolysis. We further show that macrophage-derived Chi3l3 and IGF-1 can induce metabolic inputs and mitochondrial mass/metabolism in aged and bone marrow-derived macrophages. Together, these findings reveal that macrophage-derived signals drive the mitochondrial metabolism of macrophages within early wounds in an age-dependent manner and have implications for inflammatory diseases, chronic injuries, and age-related inflammatory diseases.
This study reveals that macrophage subsets in early inflammatory stages of skin wound healing are defined by their metabolic profiles rather than polarization phenotype. Using single-cell secretomics, we establish key macrophage cytokines that comprise the wound niche and drive mitochondrial-based metabolism. Aging significantly alters macrophage heterogeneity and increases glycolytic metabolism, which can be restored to OxPHOS-based metabolism with young niche cytokines. These findings highlight the importance of the tissue niche in driving macrophage phenotypes, with implications for aging-related impairments in wound healing.
Single cell transcriptional analysis reveals that reveals that metabolic gene expression identifies distinct macrophage populations in early skin wounds.Single-cell secretomic data show that young macrophages contribute to the wound bed niche by secreting molecules such as IGF-1 and Chi3l3.Old wound macrophages display altered metabolomics, elevated glycolytic metabolism and glucose uptake, and reduced lipid uptake and mitochondrial mass/metabolism.Chi3l3 but not IGF-1 secretion is altered in macrophages in an age dependent manner.Chi3l3 can restore mitochondrial mass/metabolism in aged macrophages.
巨噬细胞的细胞代谢取决于组织微环境,并可控制巨噬细胞的炎症或修复表型。然而,组织微环境中控制巨噬细胞代谢的信号身份尚不清楚。在这里,通过对早期小鼠伤口中的巨噬细胞进行单细胞RNA测序,我们发现,定义早期伤口巨噬细胞不同群体的是代谢基因表达,而非典型炎症或修复极化标志物的基因表达。单细胞分泌组学和转录组学确定了早期伤口巨噬细胞表达的炎症和修复细胞因子,并且我们表明这些信号以年龄依赖性方式驱动代谢输入和线粒体代谢。我们表明衰老会改变早期伤口巨噬细胞的代谢组,并使其代谢从线粒体重新连接到糖酵解。我们进一步表明,巨噬细胞衍生的Chi3l3和IGF-1可诱导衰老和骨髓来源巨噬细胞的代谢输入以及线粒体质量/代谢。总之,这些发现揭示了巨噬细胞衍生的信号以年龄依赖性方式驱动早期伤口内巨噬细胞的线粒体代谢,并对炎症性疾病、慢性损伤和与年龄相关的炎症性疾病具有影响。
本研究揭示,皮肤伤口愈合早期炎症阶段的巨噬细胞亚群由其代谢谱而非极化表型定义。通过单细胞分泌组学,我们确定了构成伤口微环境并驱动基于线粒体的代谢的关键巨噬细胞细胞因子。衰老显著改变巨噬细胞异质性并增加糖酵解代谢,而年轻的微环境细胞因子可将其恢复为基于氧化磷酸化的代谢。这些发现突出了组织微环境在驱动巨噬细胞表型方面的重要性,对伤口愈合中与衰老相关的损伤具有影响。
单细胞转录分析表明,代谢基因表达可识别早期皮肤伤口中不同的巨噬细胞群体。单细胞分泌组学数据显示,年轻巨噬细胞通过分泌IGF-1和Chi3l3等分子对伤口床微环境有贡献。老年伤口巨噬细胞表现出代谢组改变、糖酵解代谢和葡萄糖摄取升高,以及脂质摄取和线粒体质量/代谢降低。巨噬细胞中Chi3l3而非IGF-1的分泌以年龄依赖性方式改变。Chi3l3可恢复老年巨噬细胞的线粒体质量/代谢。