文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于表面的深度学习方法用于皮质形状分析。

A Surface-based deep learning approach for cortical shape analysis.

作者信息

Im Yanghee, Zhao Yuji, Gutman Boris A, Thomopoulos Sophia I, Haddad Elizabeth, Zhu Alyssa H, Jahanshad Neda, Thompson Paul M, Ching Christopher R K

机构信息

Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States.

Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, United State.

出版信息

bioRxiv. 2024 Oct 29:2024.10.29.620757. doi: 10.1101/2024.10.29.620757.


DOI:10.1101/2024.10.29.620757
PMID:39554098
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11565793/
Abstract

Advances in deep learning hold promise for predicting clinical factors from human brain images. In this study, we applied a spherical harmonics-based convolutional neural network approach (SPHARM-Net) to MRI-derived brain shape metrics to predict age, sex, and Alzheimer's disease (AD) diagnosis. MRI-derived brain features included vertex-wise cortical curvature, convexity, thickness, and surface area. SPHARM-Net performs convolutions using the spherical harmonic transforms, eliminating the need to explicitly define neighborhood size, and achieving rotational equivariance. Sex classification and age regression were carried out in a large sample of healthy adults (UK Biobank; N=32,979), and AD classification performance was tested in a large, publicly available sample (ADNI; N=1,213). SPHARM-Net showed strong performance for sex classification (accuracy=0.91; balanced accuracy= 0.91; AUC=0.97), and age regression (average absolute error=2.97 years; R-squared=0.77; Pearson's coefficient=0.9). AD classification also performed well (accuracy=0.86; balanced accuracy=0.83; AUC=0.9). Our experiments demonstrate promising preliminary performance using the SPHARM-Net for two widely studied benchmarking tasks and for AD classification. Future work will include comparisons of shape-based methods and extending these analysis to more challenging tasks such as mood disorder classification.

摘要

深度学习的进展有望从人脑图像中预测临床因素。在本研究中,我们将基于球谐函数的卷积神经网络方法(SPHARM-Net)应用于磁共振成像(MRI)衍生的脑形态指标,以预测年龄、性别和阿尔茨海默病(AD)诊断。MRI衍生的脑特征包括逐顶点的皮质曲率、凸度、厚度和表面积。SPHARM-Net使用球谐变换进行卷积,无需明确定义邻域大小,并实现旋转不变性。在大量健康成年人样本(英国生物银行;N = 32,979)中进行性别分类和年龄回归,并在一个大型公开可用样本(阿尔茨海默病神经影像倡议;N = 1,213)中测试AD分类性能。SPHARM-Net在性别分类方面表现出色(准确率 = 0.91;平衡准确率 = 0.91;曲线下面积 = 0.97),在年龄回归方面也表现出色(平均绝对误差 = 2.97岁;决定系数 = 0.77;皮尔逊系数 = 0.9)。AD分类也表现良好(准确率 = 0.86;平衡准确率 = 0.83;曲线下面积 = 0.9)。我们的实验表明,使用SPHARM-Net在两个广泛研究的基准任务和AD分类中具有有前景的初步性能。未来的工作将包括基于形状的方法的比较,并将这些分析扩展到更具挑战性的任务,如情绪障碍分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9394/11565793/d9a77dcd6bf2/nihpp-2024.10.29.620757v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9394/11565793/a20b25a854b5/nihpp-2024.10.29.620757v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9394/11565793/d9a77dcd6bf2/nihpp-2024.10.29.620757v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9394/11565793/a20b25a854b5/nihpp-2024.10.29.620757v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9394/11565793/d9a77dcd6bf2/nihpp-2024.10.29.620757v1-f0002.jpg

相似文献

[1]
A Surface-based deep learning approach for cortical shape analysis.

bioRxiv. 2024-10-29

[2]
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.

Neuroimage. 2019-1-14

[3]
Predict Alzheimer's disease using hippocampus MRI data: a lightweight 3D deep convolutional network model with visual and global shape representations.

Alzheimers Res Ther. 2021-5-24

[4]
SPHARM-Net: Spherical Harmonics-Based Convolution for Cortical Parcellation.

IEEE Trans Med Imaging. 2022-10

[5]
Predicting histopathology markers of endometrial carcinoma with a quantitative image analysis approach based on spherical harmonics in multiparametric MRI.

Diagn Interv Imaging. 2023-3

[6]
Deep transfer learning-based fully automated detection and classification of Alzheimer's disease on brain MRI.

Br J Radiol. 2022-8-1

[7]
Geometric deep learning on brain shape predicts sex and age.

Comput Med Imaging Graph. 2021-7

[8]
A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease.

Neuroimage. 2020-3

[9]
Automated classification of Alzheimer's disease, mild cognitive impairment, and cognitively normal patients using 3D convolutional neural network and radiomic features from T1-weighted brain MRI: A comparative study on detection accuracy.

Clin Imaging. 2024-11

[10]
Analysis of structural brain MRI and multi-parameter classification for Alzheimer's disease.

Biomed Tech (Berl). 2018-7-26

本文引用的文献

[1]
Brain age predicted using graph convolutional neural network explains neurodevelopmental trajectory in preterm neonates.

Eur Radiol. 2024-6

[2]
SPHARM-Net: Spherical Harmonics-Based Convolution for Cortical Parcellation.

IEEE Trans Med Imaging. 2022-10

[3]
Geometric deep learning on brain shape predicts sex and age.

Comput Med Imaging Graph. 2021-7

[4]
Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations.

Neuroimage Clin. 2019-7-4

[5]
Sex Differences in the Adult Human Brain: Evidence from 5216 UK Biobank Participants.

Cereb Cortex. 2018-8-1

[6]
Cortical thickness in relation to clinical symptom onset in preclinical AD.

Neuroimage Clin. 2016-6-15

[7]
Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system.

Neuroimage. 1999-2

[8]
Cortical surface-based analysis. I. Segmentation and surface reconstruction.

Neuroimage. 1999-2

[9]
Cognitive decline strongly correlates with cortical atrophy in Alzheimer's dementia.

Neurobiol Aging. 1998

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索