Im Yanghee, Zhao Yuji, Gutman Boris A, Thomopoulos Sophia I, Haddad Elizabeth, Zhu Alyssa H, Jahanshad Neda, Thompson Paul M, Ching Christopher R K
Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States.
Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, United State.
bioRxiv. 2024 Oct 29:2024.10.29.620757. doi: 10.1101/2024.10.29.620757.
Advances in deep learning hold promise for predicting clinical factors from human brain images. In this study, we applied a spherical harmonics-based convolutional neural network approach (SPHARM-Net) to MRI-derived brain shape metrics to predict age, sex, and Alzheimer's disease (AD) diagnosis. MRI-derived brain features included vertex-wise cortical curvature, convexity, thickness, and surface area. SPHARM-Net performs convolutions using the spherical harmonic transforms, eliminating the need to explicitly define neighborhood size, and achieving rotational equivariance. Sex classification and age regression were carried out in a large sample of healthy adults (UK Biobank; N=32,979), and AD classification performance was tested in a large, publicly available sample (ADNI; N=1,213). SPHARM-Net showed strong performance for sex classification (accuracy=0.91; balanced accuracy= 0.91; AUC=0.97), and age regression (average absolute error=2.97 years; R-squared=0.77; Pearson's coefficient=0.9). AD classification also performed well (accuracy=0.86; balanced accuracy=0.83; AUC=0.9). Our experiments demonstrate promising preliminary performance using the SPHARM-Net for two widely studied benchmarking tasks and for AD classification. Future work will include comparisons of shape-based methods and extending these analysis to more challenging tasks such as mood disorder classification.
深度学习的进展有望从人脑图像中预测临床因素。在本研究中,我们将基于球谐函数的卷积神经网络方法(SPHARM-Net)应用于磁共振成像(MRI)衍生的脑形态指标,以预测年龄、性别和阿尔茨海默病(AD)诊断。MRI衍生的脑特征包括逐顶点的皮质曲率、凸度、厚度和表面积。SPHARM-Net使用球谐变换进行卷积,无需明确定义邻域大小,并实现旋转不变性。在大量健康成年人样本(英国生物银行;N = 32,979)中进行性别分类和年龄回归,并在一个大型公开可用样本(阿尔茨海默病神经影像倡议;N = 1,213)中测试AD分类性能。SPHARM-Net在性别分类方面表现出色(准确率 = 0.91;平衡准确率 = 0.91;曲线下面积 = 0.97),在年龄回归方面也表现出色(平均绝对误差 = 2.97岁;决定系数 = 0.77;皮尔逊系数 = 0.9)。AD分类也表现良好(准确率 = 0.86;平衡准确率 = 0.83;曲线下面积 = 0.9)。我们的实验表明,使用SPHARM-Net在两个广泛研究的基准任务和AD分类中具有有前景的初步性能。未来的工作将包括基于形状的方法的比较,并将这些分析扩展到更具挑战性的任务,如情绪障碍分类。
bioRxiv. 2024-10-29
IEEE Trans Med Imaging. 2022-10
Comput Med Imaging Graph. 2021-7
Biomed Tech (Berl). 2018-7-26
IEEE Trans Med Imaging. 2022-10
Comput Med Imaging Graph. 2021-7
Neuroimage Clin. 2019-7-4
Cereb Cortex. 2018-8-1
Neuroimage Clin. 2016-6-15
Neurobiol Aging. 1998