Aloy Albert, Galley Thomas D, Jones Caroline L, Ludescher Stefan L, Müller Markus P
Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria.
Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Vienna, Austria.
Commun Math Phys. 2024;405(12):292. doi: 10.1007/s00220-024-05123-2. Epub 2024 Nov 15.
How can detector click probabilities respond to spatial rotations around a fixed axis, in any possible physical theory? Here, we give a thorough mathematical analysis of this question in terms of "rotation boxes", which are analogous to the well-known notion of non-local boxes. We prove that quantum theory admits the most general rotational correlations for spins 0, 1/2, and 1, but we describe a metrological game where beyond-quantum resources of spin 3/2 outperform all quantum resources of the same spin. We prove a multitude of fundamental results about these correlations, including an exact convex characterization of the spin-1 correlations, a Tsirelson-type inequality for spins 3/2 and higher, and a proof that the general spin- correlations provide an efficient outer SDP approximation to the quantum set. Furthermore, we review and consolidate earlier results that hint at a wealth of applications of this formalism: a theory-agnostic semi-device-independent randomness generator, an exact characterization of the quantum (2, 2, 2)-Bell correlations in terms of local symmetries, and the derivation of multipartite Bell witnesses. Our results illuminate the foundational question of how space constrains the structure of quantum theory, they build a bridge between semi-device-independent quantum information and spacetime physics, and they demonstrate interesting relations to topics such as entanglement witnesses, spectrahedra, and orbitopes.
在任何可能的物理理论中,探测器的点击概率如何响应围绕固定轴的空间旋转?在此,我们根据“旋转盒”对这个问题进行了全面的数学分析,旋转盒类似于著名的非局部盒概念。我们证明,量子理论允许自旋为0、1/2和1的最一般旋转关联,但我们描述了一个计量博弈,其中自旋为3/2的超量子资源优于相同自旋的所有量子资源。我们证明了关于这些关联的许多基本结果,包括自旋为1的关联的精确凸特征、自旋为3/2及更高自旋的Tsirelson型不等式,以及一般自旋关联为量子集提供有效外部半定规划近似的证明。此外,我们回顾并巩固了早期结果,这些结果暗示了这种形式主义的大量应用:一个与理论无关的半设备无关随机数生成器、根据局部对称性对量子(2, 2, 2) - 贝尔关联的精确表征,以及多体贝尔见证者的推导。我们的结果阐明了空间如何约束量子理论结构的基本问题,它们在半设备无关量子信息与时空物理学之间架起了一座桥梁,并且展示了与诸如纠缠见证者、谱面体和轨道多面体等主题的有趣关系。