Yin Zhe, Song Yingnan, Zhang Junhui, Dai Qiaoyun, Zhang Xinyuan, Yang Xueying, Nie Na, Chen Cuixia, Cao Zongfu, Ma Xu
National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China.
National Human Genetic Resources Sharing Service Platform, National Research Institute for Family Planning, Beijing, China.
China CDC Wkly. 2024 Nov 8;6(45):1188-1193. doi: 10.46234/ccdcw2024.240.
Biological age (BA) can represent the actual state of human aging more accurately than chronological age (CA).
Using hematological data from 112,925 participants in southwestern China, collected between 2015 and 2021, this study constructed BA predictors using 7 machine learning (ML) methods (tailored separately for male and female populations). This study then analyzed the association between BA acceleration and type 2 diabetes mellitus (T2DM) within this data using logistic regression. Additionally, it examined the impact of glycemic control on BA in individuals with diabetes.
Among all ML models, deep neural networks (DNN) delivered the best performance in male [mean absolute error (MAE)=6.89, r=0.75] and female subsets (MAE=6.86, r=0.74). BA acceleration showed positive correlations with T2DM in both male [odds ratio (): 2.22, 95% confidence interval (): 1.77-2.77] and female subsets (: 3.10, 95% : 2.16-4.46), while BA deceleration showed negative correlations in both male (: 0.32, 95% : 0.27-0.39) and female subsets (: 0.42, 95% : 0.33-0.53). Individuals with diabetes with normal fasting glucose had significantly lower BAs than those with impaired fasting glucose in all CA groups except for patients older than 80.
Artificial intelligence (AI)-based hematological BA predictors show promise as advanced tools for assessing aging in epidemiological studies. Implementing AI-based BA predictors in public health initiatives could facilitate proactive aging management and disease prevention.
生物学年龄(BA)比实际年龄(CA)能更准确地反映人类衰老的实际状态。
本研究利用2015年至2021年间在中国西南部收集的112925名参与者的血液学数据,采用7种机器学习(ML)方法(分别针对男性和女性人群进行定制)构建BA预测模型。然后,本研究使用逻辑回归分析了该数据中BA加速与2型糖尿病(T2DM)之间的关联。此外,还研究了血糖控制对糖尿病患者BA的影响。
在所有ML模型中,深度神经网络(DNN)在男性子集[平均绝对误差(MAE)=6.89,r=0.75]和女性子集(MAE=6.86,r=0.74)中表现最佳。BA加速在男性[优势比(OR):2.22,95%置信区间(CI):1.77 - 2.77]和女性子集(OR:3.10,95%CI:2.16 - 4.46)中均与T2DM呈正相关,而BA减速在男性(OR:0.32,95%CI:0.27 - 0.39)和女性子集(OR:0.42,95%CI:0.33 - 0.53)中均呈负相关。在除80岁以上患者外的所有CA组中,空腹血糖正常的糖尿病患者的BA显著低于空腹血糖受损的患者。
基于人工智能(AI)的血液学BA预测模型有望成为流行病学研究中评估衰老的先进工具。在公共卫生举措中实施基于AI 的BA预测模型有助于积极的衰老管理和疾病预防。