Mane Sham J, Joseph Nesta B, Kumari Rekha, Narayan Awadhesh, Bhattacharyya Aninda J
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka560012, India.
Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
ACS Mater Au. 2024 Aug 2;4(6):582-591. doi: 10.1021/acsmaterialsau.4c00014. eCollection 2024 Nov 13.
Electrosynthesis of ammonia (NH), an important constituent molecule of various commercial fertilizers, is a promising and sustainable alternative strategy compared with the century-old Haber-Bosch process. Herein, zinc telluride (ZnTe) is demonstrated as an efficient electrocatalyst for reducing nitrogen (N) under ambient conditions to NH. In this simple chemical strategy, Zn preferentially binds N over hydrogen (H), and Te, by virtue of its superior electronic properties, enhances the electrocatalytic activity of ZnTe. The analysis of the X-ray diffraction data using the Bravais-Friedel-Donnay-Harker (BFDH) theory predicted a crystal geometry with the active electrocatalytic sites predominantly confined to the (111) planes of ZnTe. The preferential binding of nitrogen (N; adsorption energy = -0.043 eV) over hydrogen (H, adsorption energy = -0.028 eV) to Zn on the (111) plane of ZnTe is further confirmed by density functional theory. The ZnTe catalyst is observed to be stable in the acidic medium and delivers a very high yield of NH (19.85 μg/h mg ) and a Faradaic efficiency of 6.24% at -0.6 V (versus RHE). Additional verification experiments do not reveal the formation of side products (such as NH-NH) during N reduction by ZnTe. Further, density functional theory calculations strongly predict that the electrocatalytic reduction of N to NH by ZnTe preferentially occurs via the alternate pathway.
氨(NH₃)是各种商业肥料的重要组成分子,与有百年历史的哈伯-博施法相比,电合成氨是一种有前景的可持续替代策略。在此,碲化锌(ZnTe)被证明是一种在环境条件下将氮气(N₂)还原为NH₃的高效电催化剂。在这种简单的化学策略中,Zn对N的结合优先于氢(H),而Te凭借其优越的电子性质增强了ZnTe的电催化活性。利用布拉维-弗里德尔-多奈-哈克(BFDH)理论对X射线衍射数据的分析预测了一种晶体几何结构,其中活性电催化位点主要局限于ZnTe的(111)平面。密度泛函理论进一步证实了在ZnTe的(111)平面上,氮(N;吸附能 = -0.043 eV)比氢(H,吸附能 = -0.028 eV)更优先与Zn结合。观察到ZnTe催化剂在酸性介质中稳定,在-0.6 V(相对于可逆氢电极)下能提供非常高的NH₃产率(19.85 μg/h mg)和6.24%的法拉第效率。额外的验证实验未揭示ZnTe在N₂还原过程中形成副产物(如N₂H₄)。此外,密度泛函理论计算有力地预测,ZnTe将N₂电催化还原为NH₃优先通过交替途径发生。