Jeantet Lorène, Zondo Kukhanya, Delvenne Cyrielle, Martin Jordan, Chevallier Damien, Dufourq Emmanuel
African Institute for Mathematical Sciences, Muizenberg, Cape Town, 7945, South Africa.
African Institute for Mathematical Sciences, Research and Innovation Centre, KN3 Kigali, Rwanda.
J Exp Biol. 2024 Dec 15;227(24). doi: 10.1242/jeb.249232. Epub 2024 Dec 23.
The accelerometer, an onboard sensor, enables remote monitoring of animal posture and movement, allowing researchers to deduce behaviors. Despite the automated analysis capabilities provided by deep learning, data scarcity remains a challenge in ecology. We explored transfer learning to classify behaviors from acceleration data of critically endangered hawksbill sea turtles (Eretmochelys imbricata). Transfer learning reuses a model trained on one task from a large dataset to solve a related task. We applied this method using a model trained on green turtles (Chelonia mydas) and adapted it to identify hawksbill behaviors such as swimming, resting and feeding. We also compared this with a model trained on human activity data. The results showed an 8% and 4% F1-score improvement with transfer learning from green turtle and human datasets, respectively. Transfer learning allows researchers to adapt existing models to their study species, leveraging deep learning and expanding the use of accelerometers for wildlife monitoring.
加速度计作为一种机载传感器,能够对动物的姿势和运动进行远程监测,使研究人员能够推断行为。尽管深度学习提供了自动化分析能力,但数据稀缺仍然是生态学中的一个挑战。我们探索了迁移学习,以便根据极度濒危的玳瑁(Eretmochelys imbricata)的加速度数据对行为进行分类。迁移学习重新使用在一个大型数据集中针对一项任务训练的模型来解决相关任务。我们使用在绿海龟(Chelonia mydas)上训练的模型应用了这种方法,并对其进行调整以识别玳瑁的行为,如游泳、休息和进食。我们还将其与在人类活动数据上训练的模型进行了比较。结果表明,分别从绿海龟和人类数据集中进行迁移学习时,F1分数提高了8%和4%。迁移学习使研究人员能够将现有模型应用于他们所研究的物种,利用深度学习并扩大加速度计在野生动物监测中的应用。