Allred Aaron R, Austin Caroline R, Klausing Lanna, Boggess Nicholas, Clark Torin K
Bioastronautics Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, Colorado, United States of America.
PLoS Comput Biol. 2024 Nov 18;20(11):e1012601. doi: 10.1371/journal.pcbi.1012601. eCollection 2024 Nov.
Galvanic vestibular stimulation (GVS) is an emergent tool for stimulating the vestibular system, offering the potential to manipulate or enhance processes relying on vestibular-mediated central pathways. However, the extent of GVS's influence on the perception of self-orientation pathways is not understood, particularly in the presence of physical motions. Here, we quantify roll tilt perception impacted by GVS during passive whole-body roll tilts in humans (N = 11). We find that GVS systematically amplifies and attenuates perceptions of roll tilt during physical tilt, dependent on the GVS waveform. Subsequently, we develop a novel computational model that predicts 6DoF self-motion and self-orientation perceptions for any GVS waveform and motion by modeling the vestibular afferent neuron dynamics modulated by GVS in conjunction with an observer central processing model. This effort provides a means to systematically alter spatial orientation perceptions using GVS during concurrent physical motion, and we find that irregular afferent dynamics alone best describe resultant perceptions.
直流电前庭刺激(GVS)是一种用于刺激前庭系统的新兴工具,具有操纵或增强依赖前庭介导的中枢通路的过程的潜力。然而,GVS对自我定向通路感知的影响程度尚不清楚,尤其是在存在身体运动的情况下。在这里,我们量化了在人类被动全身侧倾(N = 11)过程中受GVS影响的侧倾感知。我们发现,GVS会根据GVS波形,在身体倾斜期间系统性地放大和减弱侧倾感知。随后,我们开发了一种新颖的计算模型,通过对受GVS调制的前庭传入神经元动力学与观察者中枢处理模型相结合进行建模,预测任何GVS波形和运动下的6自由度自我运动和自我定向感知。这项工作提供了一种在同时进行身体运动期间使用GVS系统性改变空间定向感知的方法,并且我们发现仅不规则的传入动力学最能描述由此产生的感知。