Suppr超能文献

非厄米性苏-施里弗-海格模型中的一种异常相变。

An unusual phase transition in a non-Hermitian Su-Schrieffer-Heeger model.

作者信息

Niveth A, Karthiga S, Senthilvelan M

机构信息

Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.

PG and Research Department of Physics, Seethalakshmi Ramaswami College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli 620 002, Tamil Nadu, India.

出版信息

J Phys Condens Matter. 2024 Nov 29;37(7). doi: 10.1088/1361-648X/ad9448.

Abstract

This article studies a non-Hermitian Su-Schrieffer-Heeger model which has periodically staggered Hermitian and non-Hermitian dimers. The changes in topological phases of the considered chiral symmetric model with respect to the introduced non-Hermiticity are studied where we find that the system supports only complex eigenspectra for all values of ≠ 0 and it stabilizes only non-trivial insulating phase for higher loss-gain strength. Even if the system acts as a trivial insulator in the Hermitian limit, the increase in loss-gain strength induces phase transition to non-trivial insulating phase through a (gapless) semi-metallic phase. Interesting phenomenon is observed in the case where Hermitian system acts as a non-trivial insulator. In such a situation, the introduced non-Hermiticity neither leaves the non-trivial phase undisturbed nor induces switching to trivial phase. Rather, it shows transition from non-trivial insulating phase to the same where it is mediated by the stabilization of (non-trivial) semi-metallic phase. This unusual transition between the non-trivial insulating phases through non-trivial semi-metallic phase gives rise to a question regarding the topological states of the system under open boundary conditions. So, we analyze the possibility of stable edge states in these two non-trivial insulating phases and check the characteristic difference between them. In addition, we study the nature of topological states in the case of non-trivial gapless (semi-metallic) region.

摘要

本文研究了一种非厄米特型Su-Schrieffer-Heeger模型,该模型具有周期性交错的厄米特型和非厄米特型二聚体。研究了所考虑的手征对称模型的拓扑相相对于引入的非厄米性的变化,我们发现对于所有≠0的值,系统仅支持复本征谱,并且对于更高的损耗-增益强度,它仅稳定非平凡绝缘相。即使该系统在厄米特极限下表现为平凡绝缘体,损耗-增益强度的增加也会通过(无隙)半金属相诱导向非平凡绝缘相的相变。在厄米特系统表现为非平凡绝缘体的情况下观察到有趣的现象。在这种情况下,引入的非厄米性既不会使非平凡相不受干扰,也不会诱导向平凡相的转变。相反,它显示出从非平凡绝缘相到相同相的转变,这种转变是由(非平凡)半金属相的稳定介导的。这种通过非平凡半金属相在非平凡绝缘相之间的不寻常转变引发了一个关于开放边界条件下系统拓扑态的问题。因此,我们分析了这两个非平凡绝缘相中稳定边缘态的可能性,并检查它们之间的特征差异。此外,我们研究了非平凡无隙(半金属)区域情况下拓扑态的性质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验