Cold Kristoffer Mazanti, Heen Amihai, Vamadevan Anishan, Vilmann Andreas Slot, Konge Lars, Rasmussen Morten, Svendsen Morten Bo Søndergaard
Copenhagen Academy for Medical Education and Simulation, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Copenhagen Academy for Medical Education and Simulation, Rigshospitalet, Copenhagen, Denmark.
Gastrointest Endosc. 2025 Jun;101(6):1201-1210. doi: 10.1016/j.gie.2024.11.022. Epub 2024 Nov 16.
Insufficient bowel preparation accounts for up to 42% of missed adenomas in colonoscopy. However, major analysis programs found no correlation between adenoma detection rate and the human-rated Boston Bowel Preparation Scale (BBPS), indicating limitations of the scale. We therefore aimed to develop an Open-Source Automatic Bowel Preparation Scale (OSABPS) based on artificial intelligence that is correlated to the polyp detection rate.
The OSABPS was trained on 50,000 frames from 20 colonoscopies from 3 hospitals. It involved quantifying the presence of fecal matter within the colonoscopy frames, using an approach termed the fecal ratio-the proportion of pixels identified as feces (F) relative to those identified as mucosal tissue (M) (OSABPS = F/M)-thereby making 0 the optimal score, indicating a perfect cleansing. The Youden J was used to set the threshold because it determines the optimal balance between sensitivity and specificity. The algorithm was then tested on 1405 colonoscopies from 3 hospitals (internal validation) and 5525 frames from a public colonoscopy database (Nerthus, external validation).
Internal validation: the OSABPS correlated significantly with the BBPS (Pearson r = -0.42, P < .001). A threshold of 0.09 OSABPS was determined using the Youden J. The polyp detection rate was higher for colonoscopies below the threshold of the Youden J (2-proportion z-test, P < .001). External validation: the OSABPS correlated significantly with the BBPS (Pearson r = -0.70, P < .001).
The OSABPS can automatically, instantly, and without human bias assess bowel preparation quality. Colonoscopies with an OSABPS of >0.09 should be considered for reexamination. The OSABPS's open-source nature allows free implementation.
在结肠镜检查中,肠道准备不充分导致的腺瘤漏诊率高达42%。然而,主要分析程序发现腺瘤检出率与人工评定的波士顿肠道准备量表(BBPS)之间并无相关性,这表明该量表存在局限性。因此,我们旨在开发一种基于人工智能的开源自动肠道准备量表(OSABPS),使其与息肉检出率相关。
OSABPS基于来自3家医院的20例结肠镜检查的50000帧图像进行训练。它通过一种称为粪便比率的方法来量化结肠镜检查图像中粪便物质的存在情况,即识别为粪便(F)的像素相对于识别为黏膜组织(M)的像素的比例(OSABPS = F/M),从而使0分为最佳分数,表明清洁效果完美。使用约登指数(Youden J)来设定阈值,因为它能确定敏感性和特异性之间的最佳平衡。然后,该算法在来自3家医院的1405例结肠镜检查(内部验证)以及来自一个公共结肠镜检查数据库(Nerthus,外部验证)的5525帧图像上进行测试。
内部验证:OSABPS与BBPS显著相关(Pearson相关系数r = -0.42,P <.001)。使用约登指数确定OSABPS的阈值为0.09。约登指数阈值以下的结肠镜检查息肉检出率更高(双比例z检验,P <.001)。外部验证:OSABPS与BBPS显著相关(Pearson相关系数r = -0.70,P <.001)。
OSABPS能够自动、即时且无人工偏差地评估肠道准备质量。OSABPS >0.09的结肠镜检查应考虑重新检查。OSABPS的开源性质允许免费实施。