Que Zhefu, Olivero-Acosta Maria I, Robinson Morgan, Chen Ian, Zhang Jingliang, Wettschurack Kyle, Wu Jiaxiang, Xiao Tiange, Otterbacher C Max, Shankar Vinayak, Harlow Hope, Hong Seoyong, Zirkle Benjamin, Wang Muhan, Cui Ningren, Mandal Purba, Chen Xiaoling, Deming Brody, Halurkar Manasi, Zhao Yuanrui, Rochet Jean-Christophe, Xu Ranjie, Brewster Amy L, Wu Long-Jun, Yuan Chongli, Skarnes William C, Yang Yang
Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907.
Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907.
J Neurosci. 2024 Nov 18;45(3). doi: 10.1523/JNEUROSCI.2027-23.2024.
Neuronal hyperexcitability is a hallmark of epilepsy. It has been recently shown in rodent models of seizures that microglia, the brain's resident immune cells, can respond to and modulate neuronal excitability. However, how human microglia interact with human neurons to regulate hyperexcitability mediated by an epilepsy-causing genetic mutation found in patients is unknown. The gene is responsible for encoding the voltage-gated sodium channel Nav1.2, one of the leading contributors to monogenic epilepsies. Previously, we demonstrated that the recurring Nav1.2-L1342P mutation leads to hyperexcitability in a male donor (KOLF2.1) hiPSC-derived cortical neuron model. Microglia originate from a different lineage (yolk sac) and are not naturally present in hiPSCs-derived neuronal cultures. To study how microglia respond to neurons carrying a disease-causing mutation and influence neuronal excitability, we established a co-culture model comprising hiPSC-derived neurons and microglia. We found that microglia display increased branch length and enhanced process-specific calcium signal when co-cultured with Nav1.2-L1342P neurons. Moreover, the presence of microglia significantly lowered the repetitive action potential firing and current density of sodium channels in neurons carrying the mutation. Additionally, we showed that co-culturing with microglia led to a reduction in sodium channel expression within the axon initial segment of Nav1.2-L1342P neurons. Furthermore, we demonstrated that Nav1.2-L1342P neurons release a higher amount of glutamate compared to control neurons. Our work thus reveals a critical role of human iPSCs-derived microglia in sensing and dampening hyperexcitability mediated by an epilepsy-causing mutation. Seizure studies in mouse models have highlighted the role of microglia in modulating neuronal activity, particularly in the promotion or suppression of seizures. However, a gap persists in comprehending the influence of human microglia on intrinsically hyperexcitable neurons carrying epilepsy-associated pathogenic mutations. This research addresses this gap by investigating human microglia and their impact on neuronal functions. Our findings demonstrate that microglia exhibit dynamic morphological alterations and calcium fluctuations in the presence of neurons carrying an epilepsy-associated mutation. Furthermore, microglia suppressed the excitability of hyperexcitable neurons, suggesting a potential beneficial role. This study underscores the role of microglia in the regulation of abnormal neuronal activity, providing insights into therapeutic strategies for neurological conditions associated with hyperexcitability.
神经元过度兴奋是癫痫的一个标志。最近在啮齿动物癫痫模型中发现,作为大脑固有免疫细胞的小胶质细胞能够对神经元兴奋性做出反应并进行调节。然而,人类小胶质细胞如何与人类神经元相互作用,以调节患者中发现的一种致癫痫基因突变所介导的过度兴奋尚不清楚。该基因负责编码电压门控钠通道Nav1.2,它是单基因癫痫的主要促成因素之一。此前,我们证明了反复出现的Nav1.2-L1342P突变会导致男性供体(KOLF2.1)人诱导多能干细胞衍生的皮质神经元模型出现过度兴奋。小胶质细胞起源于不同的谱系(卵黄囊),在人诱导多能干细胞衍生的神经元培养物中并非天然存在。为了研究小胶质细胞如何对携带致病突变的神经元做出反应并影响神经元兴奋性,我们建立了一个包含人诱导多能干细胞衍生的神经元和小胶质细胞的共培养模型。我们发现,与携带Nav1.2-L1342P突变的神经元共培养时,小胶质细胞的分支长度增加,且其突起特异性钙信号增强。此外,小胶质细胞的存在显著降低了携带该突变的神经元的重复动作电位发放和钠通道电流密度。此外,我们还表明,与小胶质细胞共培养会导致Nav1.2-L1342P突变神经元轴突起始段的钠通道表达减少。此外,我们证明,与对照神经元相比,携带Nav1.2-L1342P突变的神经元释放的谷氨酸量更高。因此,我们的研究揭示了人诱导多能干细胞衍生小胶质细胞在感知和抑制由致癫痫突变介导的过度兴奋中的关键作用。小鼠模型中的癫痫研究突出了小胶质细胞在调节神经元活动中的作用,特别是在癫痫发作的促进或抑制方面。然而,在理解人类小胶质细胞对携带癫痫相关致病突变的内在过度兴奋神经元的影响方面仍存在差距。本研究通过研究人类小胶质细胞及其对神经元功能的影响填补了这一空白。我们的研究结果表明,在存在携带癫痫相关突变的神经元时,小胶质细胞表现出动态的形态改变和钙波动。此外,小胶质细胞抑制了过度兴奋神经元的兴奋性,表明其具有潜在的有益作用。这项研究强调了小胶质细胞在调节异常神经元活动中的作用,为与过度兴奋相关的神经系统疾病的治疗策略提供了见解。
Cochrane Database Syst Rev. 2015-8-14
Cochrane Database Syst Rev. 2017-2-27
Cochrane Database Syst Rev. 2016-12-15
2025-1
Hum Mol Genet. 2023-6-19
Curr Protoc. 2023-3
Dev Med Child Neurol. 2023-9
Front Cell Neurosci. 2023-1-12