Suppr超能文献

自闭症相关 SCN2A 缺陷型小鼠和人类大脑类器官发育过程中突触的小胶质细胞过度修剪。

Microglial over-pruning of synapses during development in autism-associated SCN2A-deficient mice and human cerebral organoids.

机构信息

Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.

Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA.

出版信息

Mol Psychiatry. 2024 Aug;29(8):2424-2437. doi: 10.1038/s41380-024-02518-4. Epub 2024 Mar 18.

Abstract

Autism spectrum disorder (ASD) is a major neurodevelopmental disorder affecting 1 in 36 children in the United States. While neurons have been the focus of understanding ASD, an altered neuro-immune response in the brain may be closely associated with ASD, and a neuro-immune interaction could play a role in the disease progression. As the resident immune cells of the brain, microglia regulate brain development and homeostasis via core functions including phagocytosis of synapses. While ASD has been traditionally considered a polygenic disorder, recent large-scale human genetic studies have identified SCN2A deficiency as a leading monogenic cause of ASD and intellectual disability. We generated a Scn2a-deficient mouse model, which displays major behavioral and neuronal phenotypes. However, the role of microglia in this disease model is unknown. Here, we reported that Scn2a-deficient mice have impaired learning and memory, accompanied by reduced synaptic transmission and lower spine density in neurons of the hippocampus. Microglia in Scn2a-deficient mice are partially activated, exerting excessive phagocytic pruning of post-synapses related to the complement C3 cascades during selective developmental stages. The ablation of microglia using PLX3397 partially restores synaptic transmission and spine density. To extend our findings from rodents to human cells, we established a microglia-incorporated human cerebral organoid model carrying an SCN2A protein-truncating mutation identified in children with ASD. We found that human microglia display increased elimination of post-synapse in cerebral organoids carrying the SCN2A mutation. Our study establishes a key role of microglia in multi-species autism-associated models of SCN2A deficiency from mouse to human cells.

摘要

自闭症谱系障碍(ASD)是一种主要的神经发育障碍,影响美国每 36 名儿童中的 1 名。虽然神经元一直是理解 ASD 的焦点,但大脑中神经免疫反应的改变可能与 ASD 密切相关,神经免疫相互作用可能在疾病进展中发挥作用。作为大脑的常驻免疫细胞,小胶质细胞通过包括吞噬突触在内的核心功能来调节大脑发育和稳态。虽然 ASD 传统上被认为是一种多基因疾病,但最近的大规模人类遗传研究已经确定 SCN2A 缺乏是 ASD 和智力障碍的主要单基因病因。我们生成了 Scn2a 缺陷型小鼠模型,该模型显示出主要的行为和神经元表型。然而,小胶质细胞在这种疾病模型中的作用尚不清楚。在这里,我们报道 Scn2a 缺陷型小鼠学习和记忆受损,伴随着海马神经元突触传递减少和棘突密度降低。Scn2a 缺陷型小鼠的小胶质细胞部分激活,在选择性发育阶段过度吞噬与补体 C3 级联相关的突触后,发挥过度的吞噬作用。使用 PLX3397 消融小胶质细胞可部分恢复突触传递和棘突密度。为了将我们从啮齿动物的发现扩展到人类细胞,我们建立了一种包含 SCN2A 蛋白截断突变的人类大脑类器官模型,该突变是在 ASD 儿童中发现的。我们发现,携带 SCN2A 突变的大脑类器官中的人类小胶质细胞显示出更多的突触后消除。我们的研究确立了小胶质细胞在从小鼠到人类细胞的多种 SCN2A 缺乏自闭症相关模型中发挥关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验