Suppr超能文献

OSTA 和 BMR 联合预测中国人骨质疏松症。

Combining OSTA and BMR to predict osteoporosis in Chinese population.

机构信息

The Second Affiliated Hospital Of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.

Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China.

出版信息

J Orthop Surg Res. 2024 Nov 19;19(1):767. doi: 10.1186/s13018-024-05260-3.

Abstract

INTRODUCTION

Osteoporosis is a debilitating bone disease that significantly contributes to disability and a loss of autonomy among older adults. This study aimed to characterize osteoporosis and explore the feasibility of combining OSTA and BMR for osteoporosis prediction.

METHODS

A cross-sectional study involving 1435 participants (1300 women and 135 men) was conducted. Spearman's correlation, simple linear regression analyses, and multiple linear regression models were utilized to investigate the association between OSTA, BMR, and bone mineral density (BMD). Furthermore, the efficacy of integrating OSTA with BMR for osteoporosis screening and prediction was assessed through receiver operating characteristic (ROC) curves.

RESULTS

In the total population, the sensitivity of combination variable W was 58.63%, and the specificity was 70.90%. When OSTA and BMR were employed separately to diagnose osteoporosis, the sensitivity was 47.70% and 55.34%, respectively, while the specificity was 63.80% and 69.80%, respectively.

CONCLUSIONS

The combined utilization of OSTA and BMR formula represents an effective screening method for osteoporosis.

摘要

简介

骨质疏松症是一种使人虚弱的骨骼疾病,会导致老年人残疾和丧失自理能力。本研究旨在描述骨质疏松症,并探讨将 OSTA 和 BMR 相结合用于骨质疏松症预测的可行性。

方法

本研究为横断面研究,共纳入 1435 名参与者(1300 名女性和 135 名男性)。采用 Spearman 相关分析、简单线性回归分析和多元线性回归模型来探讨 OSTA、BMR 和骨密度(BMD)之间的相关性。此外,还通过受试者工作特征(ROC)曲线评估了将 OSTA 与 BMR 相结合进行骨质疏松症筛查和预测的效果。

结果

在总人群中,组合变量 W 的灵敏度为 58.63%,特异性为 70.90%。当分别使用 OSTA 和 BMR 诊断骨质疏松症时,灵敏度分别为 47.70%和 55.34%,特异性分别为 63.80%和 69.80%。

结论

OSTA 和 BMR 公式的联合应用是一种有效的骨质疏松症筛查方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98e/11575123/f34c6adba70d/13018_2024_5260_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验