Feng Xin, Wu Feng, Fu Yanke, Li Ying, Gong Yuteng, Ma Xiaoyue, Zhang Ping, Wu Chuan, Bai Ying
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China.
Small. 2025 Jan;21(2):e2409120. doi: 10.1002/smll.202409120. Epub 2024 Nov 18.
Heteroatom doping is the most common means to enhance the Li/Na ions storage of hard carbon (HC). The explanation of the storage mechanism of heteroatom-doped HC is to increase the active site or widen the layer spacing while ignoring the effect of local bending structure induced by it. Meanwhile, the storage mechanism by the localized bending structure also lacks in-depth study. Herein, a locally curved configuration and an amorphous structure are designed by introducing different heteroatoms, respectively, and the mechanism of the two types of structures on the Li/Na ions storage is explored. The density functional theory (DFT) calculation shows that the adsorption energy of Li/Na ions is optimal at the appropriate curvature of 27.72 m. Serving as anode for lithium/sodium ion batteries in ester electrolytes, the optimized HCs demonstrate satisfied specific capacity and high-rate capability, respectively. Furthermore, the charging capacity below 1.0 V of HC with suitable curvature microstructure reaches 84.8% and 90.1% of the total charge capacity, confirming that the curvature defects can better control the delithiation/desodiation process, and provide a higher energy density. This study enlightens new insights into the storage mechanisms of Li/Na ions and provides guidance for better design of heteroatom-doped carbon anodes with superior performance.
杂原子掺杂是增强硬碳(HC)锂/钠离子存储性能的最常见方法。对杂原子掺杂硬碳存储机制的解释是增加活性位点或扩大层间距,而忽略了由此引起的局部弯曲结构的影响。同时,由局部弯曲结构导致的存储机制也缺乏深入研究。在此,分别通过引入不同的杂原子设计了局部弯曲构型和非晶结构,并探讨了这两种结构对锂/钠离子存储的作用机制。密度泛函理论(DFT)计算表明,锂/钠离子的吸附能在27.72 m的适当曲率下达到最优。在酯类电解质中作为锂/钠离子电池的负极,优化后的硬碳分别展现出令人满意的比容量和高倍率性能。此外,具有合适曲率微观结构的硬碳在1.0 V以下的充电容量分别达到总充电容量的84.8%和90.1%,证实了曲率缺陷能够更好地控制脱锂/脱钠过程,并提供更高的能量密度。该研究为锂/钠离子的存储机制带来了新的见解,并为更好地设计具有优异性能的杂原子掺杂碳负极提供了指导。