Wang Wenlong, Tian Miao, Wang Zhitao, Ma Heping, Du Yibo, Si Wenhui, Zhang Wenming, Yang Hui Ying, Chen Song
Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
Nano Lett. 2024 Nov 27;24(47):15050-15059. doi: 10.1021/acs.nanolett.4c04123. Epub 2024 Nov 19.
Metal chalcogenide-based cathodes are crucial for the development of rechargeable magnesium batteries, yet the strong electrostatic interactions of Mg result in slow ion transport and high polarization. The Mg/Li hybrid battery holds promise for enhancing the energy storage capability. Herein, we establish a system that utilizes (Co,Cu)Se/CoSe heterostructure grown on carbon cloth as the cathode and APC-LiCl as a dual-salt electrolyte to achieve high reversible capacity, enhanced cyclic stability, and impressive rate performance. First-principles calculations and kinetic analyses are employed to uncover that constructing the heterointerface stimulates the formation of an intrinsic electric field and high-density electron flows, thereby accelerating charge transfer and ion diffusion processes. Finite element simulations further demonstrate that the heterostructure effectively alleviates stresses associated with magnesiation/lithiation to enhance the structural integrity of the material. Moreover, the multistep reaction unveils a stepwise structural transformation pathway. This study initiates a new chapter in designing heterointerface strategies for advanced energy storage devices.
基于金属硫族化物的阴极对于可充电镁电池的发展至关重要,然而镁的强静电相互作用导致离子传输缓慢和高极化。镁/锂混合电池有望提高储能能力。在此,我们建立了一个系统,该系统利用生长在碳布上的(Co,Cu)Se/CoSe异质结构作为阴极,APC-LiCl作为双盐电解质,以实现高可逆容量、增强的循环稳定性和令人印象深刻的倍率性能。采用第一性原理计算和动力学分析来揭示构建异质界面会刺激本征电场和高密度电子流的形成,从而加速电荷转移和离子扩散过程。有限元模拟进一步表明,异质结构有效地减轻了与镁化/锂化相关的应力,以增强材料的结构完整性。此外,多步反应揭示了一种逐步的结构转变途径。这项研究开启了为先进储能设备设计异质界面策略的新篇章。