Wu Fengqi, Liu Shuwen, Lamour Julien, Atkin Owen K, Yang Nan, Dong Tingting, Xu Weiying, Smith Nicholas G, Wang Zhihui, Wang Han, Su Yanjun, Liu Xiaojuan, Shi Yue, Xing Aijun, Dai Guanhua, Dong Jinlong, Swenson Nathan G, Kattge Jens, Reich Peter B, Serbin Shawn P, Rogers Alistair, Wu Jin, Yan Zhengbing
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China.
China National Botanical Garden, Beijing, 100093, China.
New Phytol. 2025 Apr;246(2):481-497. doi: 10.1111/nph.20267. Epub 2024 Nov 19.
Leaf dark respiration (R), an important yet rarely quantified component of carbon cycling in forest ecosystems, is often simulated from leaf traits such as the maximum carboxylation capacity (V), leaf mass per area (LMA), nitrogen (N) and phosphorus (P) concentrations, in terrestrial biosphere models. However, the validity of these relationships across forest types remains to be thoroughly assessed. Here, we analyzed R variability and its associations with V and other leaf traits across three temperate, subtropical and tropical forests in China, evaluating the effectiveness of leaf spectroscopy as a superior monitoring alternative. We found that leaf magnesium and calcium concentrations were more significant in explaining cross-site R than commonly used traits like LMA, N and P concentrations, but univariate trait-R relationships were always weak (r ≤ 0.15) and forest-specific. Although multivariate relationships of leaf traits improved the model performance, leaf spectroscopy outperformed trait-R relationships, accurately predicted cross-site R (r = 0.65) and pinpointed the factors contributing to R variability. Our findings reveal a few novel traits with greater cross-site scalability regarding R, challenging the use of empirical trait-R relationships in process models and emphasize the potential of leaf spectroscopy as a promising alternative for estimating R, which could ultimately improve process modeling of terrestrial plant respiration.
叶片暗呼吸(R)是森林生态系统碳循环的一个重要但很少被量化的组成部分,在陆地生物圈模型中,通常根据叶片性状(如最大羧化能力(V)、单位面积叶质量(LMA)、氮(N)和磷(P)浓度)来模拟。然而,这些关系在不同森林类型中的有效性仍有待全面评估。在此,我们分析了中国三种温带、亚热带和热带森林中叶片暗呼吸的变异性及其与最大羧化能力(V)和其他叶片性状的关联,评估了叶片光谱作为一种更优监测方法的有效性。我们发现,与单位面积叶质量(LMA)、氮(N)和磷(P)浓度等常用性状相比,叶片镁和钙浓度在解释不同地点的叶片暗呼吸(R)方面更为显著,但单变量性状与叶片暗呼吸(R)的关系始终较弱(r≤0.15)且具有森林特异性。尽管叶片性状的多变量关系提高了模型性能,但叶片光谱比性状与叶片暗呼吸(R)的关系表现更优,能准确预测不同地点的叶片暗呼吸(R)(r = 0.65),并确定了导致叶片暗呼吸(R)变异的因素。我们的研究结果揭示了一些在叶片暗呼吸(R)方面具有更大跨地点可扩展性的新性状,对过程模型中经验性状与叶片暗呼吸(R)关系的应用提出了挑战,并强调了叶片光谱作为估算叶片暗呼吸(R)的一种有前景的替代方法的潜力,这最终可能会改进陆地植物呼吸的过程建模。