Suppr超能文献

钠通道Na1.7、Na1.8与疼痛:Na1.7基因敲除镇痛的两种不同机制

Sodium channels Na1.7, Na1.8 and pain; two distinct mechanisms for Na1.7 null analgesia.

作者信息

Iseppon Federico, Kanellopoulos Alexandros H, Tian Naxi, Zhou Jun, Caan Gozde, Chiozzi Riccardo, Thalassinos Konstantinos, Çubuk Cankut, Lewis Myles J, Cox James J, Zhao Jing, Woods Christopher G, Wood John N

机构信息

Molecular Nociception Group, Wolfson Institute for Biomedical Research, UCL, Gower Street, London WC1E 6BT, UK.

Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK.

出版信息

Neurobiol Pain. 2024 Oct 11;16:100168. doi: 10.1016/j.ynpai.2024.100168. eCollection 2024 Jul-Dec.

Abstract

Genetic deletion and pharmacological inhibition are distinct approaches to unravelling pain mechanisms, identifying targets and developing new analgesics. Both approaches have been applied to the voltage-gated sodium channels Na1.7 and Na1.8. Genetic deletion of Na1.8 in mice leads to a loss of pain and antagonists are effective analgesics. The situation with Nav1.7 is more complex. Complete embryonic loss of Na1.7 in humans or in mouse sensory neurons leads to anosmia as well as profound analgesia as a result of diminished neurotransmitter release. This is mediated by enhanced endogenous opioid signaling in humans and mice. In contrast, anosmia is opioid-independent. Sensory neuron excitability and autonomic function appear to be normal. Adult deletion of Na1.7 in sensory neurons also leads to analgesia, but through diminished sensory and autonomic neuron excitability. There is no opioid component of analgesia or anosmia as shown by a lack of effect of naloxone. Pharmacological inhibition of Na1.7 in mice and humans leads both to analgesia and dramatic side-effects on the autonomic nervous system with no therapeutic window. These data demonstrate that specific Na1.7 channel blockers will fail as analgesic drugs. The viability of embryonic null mutants suggests that there are compensatory changes to replace the lost Na1.7 channel. Here we show that sensory neuron sodium channels Na1.1, Na1.2 and β4 subunits detected by Mass Spectrometry are upregulated in Na1.7 embryonic null neurons and, together with other proteome changes, potentially compensate for the loss of Na1.7. Interestingly, many of the upregulated proteins are known to interact with Nav1.7.

摘要

基因敲除和药物抑制是揭示疼痛机制、确定靶点以及开发新型镇痛药的不同方法。这两种方法都已应用于电压门控钠通道Na1.7和Na1.8。小鼠中Na1.8的基因敲除导致痛觉丧失,其拮抗剂是有效的镇痛药。Nav1.7的情况更为复杂。人类或小鼠感觉神经元中Na1.7在胚胎期完全缺失会导致嗅觉丧失以及由于神经递质释放减少而引起的深度镇痛。这是由人类和小鼠体内内源性阿片类信号增强介导的。相比之下,嗅觉丧失与阿片类物质无关。感觉神经元兴奋性和自主神经功能似乎正常。感觉神经元中成年期敲除Na1.7也会导致镇痛,但这是通过感觉和自主神经元兴奋性降低实现的。如纳洛酮无效所示,镇痛和嗅觉丧失中不存在阿片类成分。小鼠和人类中对Na1.7的药物抑制会导致镇痛以及对自主神经系统产生严重副作用,且没有治疗窗。这些数据表明,特异性Na1.7通道阻滞剂作为镇痛药将会失败。胚胎期基因敲除突变体的存活表明存在代偿性变化来替代缺失的Na1.7通道。在此我们表明,通过质谱检测到的感觉神经元钠通道Na1.1、Na1.2和β4亚基在Na1.7胚胎期基因敲除神经元中上调,并且与其他蛋白质组变化一起,可能补偿了Na1.7的缺失。有趣的是,许多上调的蛋白质已知与Nav1.7相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bda1/11570969/26ececc67372/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验