Suppr超能文献

基于深度学习方法发现茵陈蒿汤治疗肝脏炎症性疾病的靶向TLR4活性成分

Discovery of Active Ingredient of Yinchenhao Decoction Targeting TLR4 for Hepatic Inflammatory Diseases Based on Deep Learning Approach.

作者信息

Zhang Sizhe, Han Peng, Sun Haiqing, Su Ying, Chen Chen, Chen Cheng, Li Jinyao, Lv Xiaoyi, Tian Xuecong, Xu Yandan

机构信息

College of Software, Xinjiang University, Urumqi, 830046, China.

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.

出版信息

Interdiscip Sci. 2025 Jun;17(2):293-305. doi: 10.1007/s12539-024-00670-7. Epub 2024 Nov 19.

Abstract

Yinchenhao Decoction (YCHD), a classic formula in traditional Chinese medicine, is believed to have the potential to treat liver diseases by modulating the Toll-like receptor 4 (TLR4) target. Therefore, a thorough exploration of the effective components and therapeutic mechanisms targeting TLR4 in YCHD is a promising strategy for liver diseases. In this study, the AIGO-DTI deep learning framework was proposed to predict the targeting probability of major components in YCHD for TLR4. Comparative evaluations with four machine learning models (RF, SVM, KNN, XGBoost) and two deep learning models (GCN, GAT) demonstrated that the AIGO-DTI framework exhibited the best overall performance, with Recall and AUC reaching 0.968 and 0.991, respectively.This study further utilized the AIGO-DTI model to identify the potential impact of Isoscopoletin, a major component of YCHD, on TLR4. Subsequent wet experiments revealed that Isoscopoletin could influence the maturation of Dendritic Cells (DCs) induced by Lipopolysaccharide (LPS) through TLR4, suggesting its therapeutic potential for liver diseases, especially hepatitis. Additionally, based on the AIGO-DTI framework, this study established an online platform named TLR4-Predict to facilitate domain experts in discovering more compounds related to TLR4. Overall, the proposed AIGO-DTI framework accurately predicts unique compounds in YCHD that interact with TLR4, providing new insights for identifying and screening lead compounds targeting TLR4.

摘要

茵陈蒿汤(YCHD)是中医经典方剂,被认为具有通过调节Toll样受体4(TLR4)靶点来治疗肝脏疾病的潜力。因此,深入探索茵陈蒿汤中靶向TLR4的有效成分和治疗机制是治疗肝脏疾病的一个有前景的策略。在本研究中,提出了AIGO-DTI深度学习框架来预测茵陈蒿汤主要成分对TLR4的靶向概率。与四种机器学习模型(随机森林、支持向量机、K近邻、极端梯度提升)和两种深度学习模型(图卷积网络、图注意力网络)的比较评估表明,AIGO-DTI框架表现出最佳的整体性能,召回率和曲线下面积分别达到0.968和0.991。本研究进一步利用AIGO-DTI模型来确定茵陈蒿汤的主要成分异泽兰黄素对TLR4的潜在影响。随后的湿实验表明,异泽兰黄素可通过TLR4影响脂多糖(LPS)诱导的树突状细胞(DCs)成熟,表明其对肝脏疾病尤其是肝炎的治疗潜力。此外,基于AIGO-DTI框架,本研究建立了一个名为TLR4-Predict的在线平台,以方便领域专家发现更多与TLR4相关的化合物。总体而言,所提出的AIGO-DTI框架准确预测了茵陈蒿汤中与TLR4相互作用的独特化合物,为识别和筛选靶向TLR4的先导化合物提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验