Costa Rui R, Domínguez-Arca Vicente, Velasco Brenda, Reis Rui L, Rodríguez-Cabello José Carlos, Pashkuleva Iva, Taboada Pablo, Prieto Gerardo
3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal.
ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga, Guimarães, Portugal.
ACS Appl Mater Interfaces. 2024 Dec 4;16(48):66327-66340. doi: 10.1021/acsami.4c07285. Epub 2024 Nov 19.
Current models for elastin-like recombinamer (ELR) design struggle to predict the effects of nonprotein fused materials on polypeptide conformation and temperature-responsive properties. To address this shortage, we investigated the novel functionalization of ELRs with cholesterol (CTA). We employed GROMACS computational molecular dynamic simulations complemented with experimental evidence to validate the predictions. The ELR was biosynthesized and characterized by using fluorescence assays, circular dichroism, dynamic light scattering, and differential scanning calorimetry. The and data showed that CTA promotes the formation of intramolecular hydrogen bonds that favor β-sheet secondary structures. Compared with an unmodified ELR, CTA enhanced the hydrophobicity and stability of the system, allowing the formation of monodisperse nanoaggregates at physiologically relevant temperatures. Importantly, calorimetry assays revealed that ELR interacted and intercalated with the lipid bilayers of the DPPC liposomes. To demonstrate the implications of these changes for biomedical applications, ELR and DPPC-ELR hybrid nanoparticles were tested with cancer and immune cell lines. Interactions with the cell membranes demonstrated a synergistic effect of the composition and size of the modified recombinamer aggregates on the internalization. The results indicated the potential use of ELR-based nanoparticles for localized and systemic drug delivery. This work sets a new precedent to design elastin-inspired biomaterials with predictable self-assembly properties and develop novel drug delivery strategies.
目前用于弹性蛋白样重组聚合物(ELR)设计的模型难以预测非蛋白质融合材料对多肽构象和温度响应特性的影响。为了解决这一不足,我们研究了用胆固醇(CTA)对ELR进行新型功能化修饰。我们采用GROMACS计算分子动力学模拟并辅以实验证据来验证预测结果。通过荧光测定、圆二色性、动态光散射和差示扫描量热法对生物合成的ELR进行了表征。圆二色性和差示扫描量热法数据表明,CTA促进了有利于β-折叠二级结构的分子内氢键的形成。与未修饰的ELR相比,CTA增强了系统的疏水性和稳定性,使得在生理相关温度下形成单分散纳米聚集体。重要的是,量热法测定表明ELR与二棕榈酰磷脂酰胆碱(DPPC)脂质体的脂质双层相互作用并插入其中。为了证明这些变化对生物医学应用的影响,我们用癌症和免疫细胞系对ELR和DPPC-ELR混合纳米颗粒进行了测试。与细胞膜的相互作用表明,修饰后的重组聚合物聚集体的组成和大小对内化具有协同作用。结果表明基于ELR的纳米颗粒在局部和全身药物递送方面具有潜在用途。这项工作为设计具有可预测自组装特性的弹性蛋白启发生物材料和开发新型药物递送策略开创了新的先例。