Suppr超能文献

用于CuSnS量子点敏化太阳能光电化学电池高效析氢的光阳极/电解质界面修饰

Photoanode/Electrolyte Interface Modification for Efficient Hydrogen Evolution in CuSnS Dots-Sensitized Solar PEC Cells.

作者信息

Chen Ao, Chen Chuang, Cao Jinshan, Chen Xiufen, Shao Shuai, Lian Yang, Zheng Wei

机构信息

School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China.

出版信息

Langmuir. 2024 Dec 3;40(48):25558-25567. doi: 10.1021/acs.langmuir.4c03364. Epub 2024 Nov 19.

Abstract

It is proven through transmission electron microscope (TEM) analysis that solar sensitizer CuSnS (CTS) dots prepared via the hot-injection route are nonspherical, polyhedral nanocrystals with the size of ∼11 nm. CTS dots were deposited into a porous TiO layer to form CTS/TiO, an effective type II heterojunction in photoanodes. The electronic and energy band structures of TiO and CTS were studied by the plane-wave ultrasoft pseudopotential method based on density functional theory (DFT) and verified by ultraviolet-visible (UV-vis) spectroscopy. UV-vis and Photoluminescence (PL) spectra show that the CTS/TiO photoanode exhibits wider visible-light absorption as well as lower charge recombination. ZnS quantum dots (QDs) deposited on the CTS/TiO photoanode through the in situ successive ion layer adsorption and reaction (SILAR) method as the passivation layer can inhibit the reverse carrier transfer and increase the photocurrent density by building a potential barrier on the CTS/TiO photoanode and electrolyte interface. When 2-layer ZnS QDs are deposited, the maximum photocurrent density of the photoelectrochemical (PEC) cell composed of a ZnS/CTS/TiO photoanode, a Pt counter electrode, and NaSO solution electrolyte is 8.43 mA/cm and the maximum applied bias photon-to-current efficiency (ABPE) is 7.79%. Under 1 sun (AM 1.5, 100 mW/cm) with 0.6 V bias, its hydrogen yield reached 125.7 μmol·cm after 4 h with the rate of 31.4 μmol·cm·h in contrast to the yield of 107.86 μmol·cm with the rate of 21.3 μmol·cm·h for the CTS/TiO photoanode.

摘要

通过透射电子显微镜(TEM)分析证明,通过热注入法制备的太阳能敏化剂CuSnS(CTS)量子点是非球形的多面体纳米晶体,尺寸约为11nm。CTS量子点沉积在多孔TiO层中形成CTS/TiO,这是光阳极中一种有效的II型异质结。基于密度泛函理论(DFT)的平面波超软赝势方法研究了TiO和CTS的电子和能带结构,并通过紫外可见(UV-vis)光谱进行了验证。UV-vis和光致发光(PL)光谱表明,CTS/TiO光阳极具有更宽的可见光吸收以及更低的电荷复合。通过原位连续离子层吸附和反应(SILAR)方法沉积在CTS/TiO光阳极上的ZnS量子点(QDs)作为钝化层,可以通过在CTS/TiO光阳极和电解质界面上构建势垒来抑制反向载流子转移并增加光电流密度。当沉积2层ZnS量子点时,由ZnS/CTS/TiO光阳极、Pt对电极和NaSO溶液电解质组成的光电化学(PEC)电池的最大光电流密度为8.43 mA/cm,最大外加偏压光子到电流效率(ABPE)为7.79%。在1个太阳(AM 1.5,100 mW/cm)和0.6 V偏压下,4小时后其产氢量达到125.7 μmol·cm,产氢速率为31.4 μmol·cm·h,相比之下,CTS/TiO光阳极的产氢量为107.86 μmol·cm,产氢速率为21.3 μmol·cm·h。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验