基于拉普拉斯算子的患者特异性血管移植物自动形状优化。
Automatic Laplacian-based shape optimization for patient-specific vascular grafts.
作者信息
Habibi Milad, Aslan Seda, Liu Xiaolong, Loke Yue-Hin, Krieger Axel, Hibino Narutoshi, Olivieri Laura, Fuge Mark
机构信息
Center for Risk and Reliability, Department of Mechanical Engineering, University of Maryland, College Park, MD, United States of America.
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States of America.
出版信息
Comput Biol Med. 2025 Jan;184:109308. doi: 10.1016/j.compbiomed.2024.109308. Epub 2024 Nov 18.
Cognitional heart disease is one of the leading causes of mortality among newborns. Tissue-engineered vascular grafts offer the potential to help treat cognitional heart disease through patient-specific vascular grafts. However, current methods often rely on non-personalized designs or involve significant human intervention. This paper presents a computational framework for the automatic shape optimization of patient-specific tissue-engineered vascular grafts for repairing the aortic arch, aimed at reducing the need for manual input and improving current treatment outcomes, which either use non-patient-specific geometry or require extensive human intervention to design the vascular graft. The paper's core innovation lies in an automatic shape optimization pipeline that combines Bayesian optimization techniques with the open-source finite volume solver, OpenFOAM, and a novel graft deformation algorithm. Specifically, our framework begins with Laplacian mode computation and the approximation of a computationally low-cost Gaussian process surrogate model to capture the minimum weighted combination of inlet-outlet pressure drop (PD) and maximum wall shear stress (WSS). Bayesian Optimization then performs a limited number of OpenFOAM simulations to identify the optimal patient-specific shape. We use imaging and flow data obtained from six patients diagnosed with cognitional heart disease to evaluate our approach. Our results showcase the potential of online training and hemodynamic surrogate model optimization for providing optimal graft shapes. These results show how our framework successfully reduces inlet-outlet PD and maximum WSS compared to pre-lofted models that include both the native geometry and human-designed grafts. Furthermore, we compare how the performance of each design optimized under steady-state simulation compares to that design's performance under transient simulation, and to what extent the optimal design remains similar under both conditions. Our findings underscore that the automated designs achieve at least a 16% reduction in blood flow pressure drop in comparison to geometries optimized by humans.
先天性心脏病是新生儿死亡的主要原因之一。组织工程血管移植物有望通过定制的血管移植物帮助治疗先天性心脏病。然而,目前的方法通常依赖于非个性化设计或涉及大量人工干预。本文提出了一个计算框架,用于对修复主动脉弓的定制组织工程血管移植物进行自动形状优化,旨在减少人工输入需求并改善当前的治疗效果,当前治疗方法要么使用非患者特定的几何形状,要么需要大量人工干预来设计血管移植物。本文的核心创新在于一个自动形状优化流程,该流程将贝叶斯优化技术与开源有限体积求解器OpenFOAM以及一种新颖的移植物变形算法相结合。具体而言,我们的框架首先进行拉普拉斯模态计算,并近似一个计算成本低的高斯过程代理模型,以捕获进出口压降(PD)和最大壁面剪应力(WSS)的最小加权组合。然后,贝叶斯优化进行有限次数的OpenFOAM模拟,以确定最佳的患者特定形状。我们使用从六名被诊断患有先天性心脏病的患者获得的成像和血流数据来评估我们的方法。我们的结果展示了在线训练和血流动力学代理模型优化在提供最佳移植物形状方面的潜力。这些结果表明,与包括天然几何形状和人工设计移植物的预放样模型相比,我们的框架如何成功降低了进出口PD和最大WSS。此外,我们比较了在稳态模拟下优化的每个设计的性能与该设计在瞬态模拟下的性能,以及在两种条件下最佳设计保持相似的程度。我们的研究结果强调,与人工优化的几何形状相比,自动化设计实现了至少16%的血流压降降低。
相似文献
Comput Biol Med. 2025-1
Annu Int Conf IEEE Eng Med Biol Soc. 2020-7
Cardiovasc Eng Technol. 2024-4
J Thorac Cardiovasc Surg. 2019-10-9
JTCVS Open. 2024-2-27
Tissue Eng Part C Methods. 2019-9-3
Ann Biomed Eng. 2012-4-27
本文引用的文献
Cardiovasc Eng Technol. 2024-4
Methods Mol Biol. 2024
Nanoscale. 2023-7-6
Commun Med (Lond). 2022-1-10
Big Data. 2024-12
JMIR Med Inform. 2021-10-15
Annu Int Conf IEEE Eng Med Biol Soc. 2020-7
J Thorac Cardiovasc Surg. 2020-1-8
Korean Circ J. 2019-4
J Thorac Cardiovasc Surg. 2017-12-5