Department of MAE, UCSD, La Jolla, CA 92093-0411, USA.
Ann Biomed Eng. 2012 Oct;40(10):2228-42. doi: 10.1007/s10439-012-0579-3. Epub 2012 Apr 27.
We present a computational framework for multiscale modeling and simulation of blood flow in coronary artery bypass graft (CABG) patients. Using this framework, only CT and non-invasive clinical measurements are required without the need to assume pressure and/or flow waveforms in the coronaries and we can capture global circulatory dynamics. We demonstrate this methodology in a case study of a patient with multiple CABGs. A patient-specific model of the blood vessels is constructed from CT image data to include the aorta, aortic branch vessels (brachiocephalic artery and carotids), the coronary arteries and multiple bypass grafts. The rest of the circulatory system is modeled using a lumped parameter network (LPN) 0 dimensional (0D) system comprised of resistances, capacitors (compliance), inductors (inertance), elastance and diodes (valves) that are tuned to match patient-specific clinical data. A finite element solver is used to compute blood flow and pressure in the 3D (3 dimensional) model, and this solver is implicitly coupled to the 0D LPN code at all inlets and outlets. By systematically parameterizing the graft geometry, we evaluate the influence of graft shape on the local hemodynamics, and global circulatory dynamics. Virtual manipulation of graft geometry is automated using Bezier splines and control points along the pathlines. Using this framework, we quantify wall shear stress, wall shear stress gradients and oscillatory shear index for different surgical geometries. We also compare pressures, flow rates and ventricular pressure-volume loops pre- and post-bypass graft surgery. We observe that PV loops do not change significantly after CABG but that both coronary perfusion and local hemodynamic parameters near the anastomosis region change substantially. Implications for future patient-specific optimization of CABG are discussed.
我们提出了一种用于冠状动脉旁路移植术(CABG)患者血流的多尺度建模和模拟的计算框架。使用该框架,仅需要 CT 和非侵入性临床测量,而无需假设冠状动脉中的压力和/或流量波形,并且我们可以捕获全局循环动力学。我们在一个具有多个 CABG 的患者的病例研究中演示了这种方法。从 CT 图像数据构建了血管的患者特定模型,以包括主动脉,主动脉分支血管(头臂动脉和颈动脉),冠状动脉和多个旁路移植物。使用集中参数网络(LPN)0 维(0D)系统对循环系统的其余部分进行建模,该系统由电阻,电容器(顺应性),电感器(惯性),弹性和二极管(阀)组成,这些参数被调整以匹配患者特定的临床数据。使用有限元求解器计算 3D(3 维)模型中的血流和压力,并且该求解器在所有入口和出口处隐式耦合到 0D LPN 代码。通过系统地参数化移植物几何形状,我们评估了移植物形状对局部血液动力学和全局循环动力学的影响。使用 Bezier 样条和沿轨线的控制点自动进行移植物几何形状的虚拟操作。使用该框架,我们针对不同的手术几何形状量化壁面切应力,壁面切应力梯度和振荡剪切指数。我们还比较了旁路移植术前后的压力,流量和心室压力-容积环。我们观察到 CABG 后 PV 环没有明显变化,但吻合区域附近的冠状灌注和局部血液动力学参数都有很大变化。讨论了对未来 CABG 的患者特定优化的影响。