Yang Zhihui, Ren Jiali, You Junhua, Luo Xilu, Wang Xinyu, Xue Yanjun, Qin Yingying, Tian Jian, Zhang Hangzhou, Han Shuai
School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China.
J Colloid Interface Sci. 2025 Feb 15;680(Pt B):124-136. doi: 10.1016/j.jcis.2024.11.070. Epub 2024 Nov 15.
Step-scheme (S-scheme) heterojunction has attracted much attention in the design of heterostructures for photocatalysts. In this study, we successfully utilized the principle of electrostatic self-assembly to load ultrathin ZnInS nanosheets onto snowflake-like CuS using a simple grinding method, and synthesized CuS/ZnInS S-scheme heterojunctions according to the different work functions (Φ). At the optimal CuS loading ratio (5 wt%), the hydrogen yield of the CuS/ZnInS composites reaches 5.58 mmol·h·g, which is 5.12 times higher than that of pure ZnInS (1.09 mmol·h·g). The apparent quantum efficiency (AQE) of the CuS/ZnInS composites reaches 5.8 % (λ = 370 nm), which is an improvement compared to pure ZnInS (2.7 %). The AQE of pure ZnInS is 0.4 %, while the AQE of CuS/ZnInS composites is enhanced to 1.0 % at λ = 456 nm. The heterojunction interface of CuS and ZnInS builds a built-in electric field (IEF), which greatly reduces the recombination rate of photogenerated electrons and holes, retains highly reduced photoelectrons in the conduction band (CB) of ZnInS. The snowflake structure of CuS effectively increases the active sites and specific surface area, and improves the light absorption. This work opens a new avenue for designing photocatalysts, synergizing energy development and protecting the environment.
阶梯式(S 型)异质结在光催化剂异质结构设计中备受关注。在本研究中,我们成功利用静电自组装原理,通过简单研磨方法将超薄 ZnInS 纳米片负载到雪花状 CuS 上,并根据不同的功函数(Φ)合成了 CuS/ZnInS S 型异质结。在最佳 CuS 负载率(5 wt%)下,CuS/ZnInS 复合材料的产氢量达到 5.58 mmol·h·g,比纯 ZnInS(1.09 mmol·h·g)高 5.12 倍。CuS/ZnInS 复合材料的表观量子效率(AQE)达到 5.8%(λ = 370 nm),相比纯 ZnInS(2.7%)有所提高。纯 ZnInS 的 AQE 为 0.4%,而在 λ = 456 nm 时,CuS/ZnInS 复合材料的 AQE 提高到 1.0%。CuS 和 ZnInS 的异质结界面构建了内建电场(IEF),大大降低了光生电子和空穴的复合率,使高还原态光电子保留在 ZnInS 的导带(CB)中。CuS 的雪花结构有效地增加了活性位点和比表面积,并提高了光吸收。这项工作为设计光催化剂、协同能源开发和保护环境开辟了一条新途径。