Rex Nathaniel B, Chuck Carlin C, Dandapani Hari G, Zhou Helen Y, Yi Thomas Y, Collins Scott A, Bai Harrison X, Eloyan Ani, Jones Richard N, Boxerman Jerrold L, Girard Timothy D, Boukrina Olga, Reznik Michael E
Department of Neurology, Alpert Medical School, Brown University, Providence, RI, USA.
Department of Diagnostic Imaging, Alpert Medical School, Brown University, Providence, RI, USA.
Neurocrit Care. 2024 Nov 19. doi: 10.1007/s12028-024-02148-2.
Delirium occurs frequently in patients with stroke, but the role of preexisting neural substrates in delirium pathogenesis remains unclear. We sought to explore associations between acute and chronic neural substrates of delirium in patients with intracerebral hemorrhage (ICH).
Using data from a single-center ICH registry, we identified consecutive patients with acute nontraumatic ICH and available magnetic resonance imaging scans. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria were used to classify each patient as delirious or nondelirious during their hospitalization. Magnetic resonance imaging scans were processed and analyzed using semiautomated software, with volumetric measurement of acute ICH volume as well as white matter hyperintensity volume (WMHV) and gray and white matter volumes from the contralateral hemisphere. We tested associations between WMHV and incident delirium using multivariable regression models, and then determined the predictive accuracy of these neuroimaging models via area under the curve (AUC) analysis.
Of 139 patients in our cohort (mean [standard deviation] age 67.3 [17.3] years, 53% male), 58 (42%) patients experienced delirium. In our primary analyses, WMHV was significantly associated with delirium after adjusting for ICH features (odds ratio 1.56 per 10 cm, 95% confidence interval 1.13-2.13), and this association was strengthened after further adjustment for segmented brain volume in patients with high-resolution scans (odds ratio 1.89 per 10 cm, 95% confidence interval 1.24-2.86). Neuroimaging-based models predicted delirium with high accuracy (AUC 0.81), especially in patients with Glasgow Coma Scale score > 13 (AUC 0.85) and smaller ICH (AUC 0.91).
Chronic white matter disease is independently associated with delirium in patients with acute ICH, and neuroimaging biomarkers may have utility in predicting delirium occurrence.
谵妄在中风患者中频繁发生,但既往存在的神经基质在谵妄发病机制中的作用仍不清楚。我们试图探讨脑出血(ICH)患者谵妄的急性和慢性神经基质之间的关联。
利用单中心ICH登记处的数据,我们确定了连续的急性非创伤性ICH患者以及可用的磁共振成像扫描。采用《精神疾病诊断与统计手册》第五版标准将每位患者在住院期间分类为谵妄或非谵妄。使用半自动软件对磁共振成像扫描进行处理和分析,测量急性ICH体积以及白质高信号体积(WMHV)和对侧半球的灰质和白质体积。我们使用多变量回归模型测试WMHV与新发谵妄之间的关联,然后通过曲线下面积(AUC)分析确定这些神经影像模型的预测准确性。
在我们的队列中的139名患者(平均[标准差]年龄67.3[17.3]岁,53%为男性)中,58名(42%)患者发生了谵妄。在我们的主要分析中,在调整ICH特征后,WMHV与谵妄显著相关(每10 cm优势比1.56,95%置信区间1.13 - 2.13),在对高分辨率扫描患者的脑体积进行进一步调整后,这种关联得到加强(每10 cm优势比1.89,95%置信区间1.24 - 2.86)。基于神经影像的模型对谵妄的预测准确性较高(AUC 0.81),尤其是在格拉斯哥昏迷量表评分>13的患者中(AUC 0.85)以及较小ICH的患者中(AUC 0.91)。
慢性白质疾病与急性ICH患者的谵妄独立相关,神经影像生物标志物可能有助于预测谵妄的发生。