文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过在多细胞合成基因电路中控制细胞生长来控制时空模式。

Control of spatio-temporal patterning via cell growth in a multicellular synthetic gene circuit.

机构信息

Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

出版信息

Nat Commun. 2024 Nov 19;15(1):9867. doi: 10.1038/s41467-024-53078-8.


DOI:10.1038/s41467-024-53078-8
PMID:39562554
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11577002/
Abstract

A major goal in synthetic development is to build gene regulatory circuits that control patterning. In natural development, an interplay between mechanical and chemical communication shapes the dynamics of multicellular gene regulatory circuits. For synthetic circuits, how non-genetic properties of the growth environment impact circuit behavior remains poorly explored. Here, we first describe an occurrence of mechano-chemical coupling in synthetic Notch (synNotch) patterning circuits: high cell density decreases synNotch-gated gene expression in different cellular systems in vitro. We then construct, both in vitro and in silico, a synNotch-based signal propagation circuit whose outcome can be regulated by cell density. Spatial and temporal patterning outcomes of this circuit can be predicted and controlled via modulation of cell proliferation, initial cell density, and/or spatial distribution of cell density. Our work demonstrates that synthetic patterning circuit outcome can be controlled via cellular growth, providing a means for programming multicellular circuit patterning outcomes.

摘要

合成发展的主要目标是构建控制模式的基因调控电路。在自然发育过程中,机械和化学通讯之间的相互作用塑造了多细胞基因调控电路的动力学。对于合成电路,生长环境的非遗传特性如何影响电路行为仍未得到很好的探索。在这里,我们首先描述了合成 Notch(synNotch)模式形成电路中机械-化学偶联的发生:高密度降低了不同细胞系统中 synNotch 门控基因的表达。然后,我们构建了基于 synNotch 的信号传播电路,该电路的输出可以通过细胞密度进行调节。通过调节细胞增殖、初始细胞密度和/或细胞密度的空间分布,可以预测和控制该电路的时空模式形成结果。我们的工作表明,通过细胞生长可以控制合成模式形成电路的结果,为编程多细胞电路模式形成结果提供了一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65a/11577002/805293b9583b/41467_2024_53078_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65a/11577002/84296782d65b/41467_2024_53078_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65a/11577002/122c055981d6/41467_2024_53078_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65a/11577002/7fc131c95dec/41467_2024_53078_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65a/11577002/9836437ff3ef/41467_2024_53078_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65a/11577002/0177f86669bd/41467_2024_53078_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65a/11577002/da8d566f85e4/41467_2024_53078_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65a/11577002/805293b9583b/41467_2024_53078_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65a/11577002/84296782d65b/41467_2024_53078_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65a/11577002/122c055981d6/41467_2024_53078_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65a/11577002/7fc131c95dec/41467_2024_53078_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65a/11577002/9836437ff3ef/41467_2024_53078_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65a/11577002/0177f86669bd/41467_2024_53078_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65a/11577002/da8d566f85e4/41467_2024_53078_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65a/11577002/805293b9583b/41467_2024_53078_Fig7_HTML.jpg

相似文献

[1]
Control of spatio-temporal patterning via cell growth in a multicellular synthetic gene circuit.

Nat Commun. 2024-11-19

[2]
Parameterized Computational Framework for the Description and Design of Genetic Circuits of Morphogenesis Based on Contact-Dependent Signaling and Changes in Cell-Cell Adhesion.

ACS Synth Biol. 2022-4-15

[3]
SynNotch CAR-T cell, when synthetic biology and immunology meet again.

Front Immunol. 2025-4-16

[4]
Quantitative modeling of the interplay between synthetic gene circuits and host physiology: experiments, results, and prospects.

Curr Opin Microbiol. 2020-6

[5]
Growth Defects and Loss-of-Function in Synthetic Gene Circuits.

ACS Synth Biol. 2019-6-21

[6]
Programmed hierarchical patterning of bacterial populations.

Nat Commun. 2018-2-22

[7]
Mathematical and In Silico Analysis of Synthetic Inhibitory Circuits That Program Self-Organizing Multicellular Structures.

ACS Synth Biol. 2024-6-21

[8]
Engineering robust and tunable spatial structures with synthetic gene circuits.

Nucleic Acids Res. 2017-1-25

[9]
A bio-inspired spatial patterning circuit.

Annu Int Conf IEEE Eng Med Biol Soc. 2014

[10]
Novel Tunable Spatio-Temporal Patterns From a Simple Genetic Oscillator Circuit.

Front Bioeng Biotechnol. 2020-8-28

引用本文的文献

[1]
Temporal dynamics of angiogenesis: the emerging role of mechanoregulated pathways.

Biochem Soc Trans. 2025-8-29

[2]
Synthetic Forms Most Beautiful: Engineering Insights into Self-Organization.

Physiology (Bethesda). 2025-7-1

本文引用的文献

[1]
Local and global changes in cell density induce reorganisation of 3D packing in a proliferating epithelium.

Development. 2024-10-15

[2]
Proliferation-driven mechanical compression induces signalling centre formation during mammalian organ development.

Nat Cell Biol. 2024-4

[3]
Tension-tuned receptors for synthetic mechanotransduction and intercellular force detection.

Nat Biotechnol. 2023-9

[4]
Functional Comparison between Endogenous and Synthetic Notch Systems.

ACS Synth Biol. 2022-10-21

[5]
SyNPL: Synthetic Notch pluripotent cell lines to monitor and manipulate cell interactions in vitro and in vivo.

Development. 2022-6-15

[6]
Parameterized Computational Framework for the Description and Design of Genetic Circuits of Morphogenesis Based on Contact-Dependent Signaling and Changes in Cell-Cell Adhesion.

ACS Synth Biol. 2022-4-15

[7]
Synthetic developmental biology: Engineering approaches to guide multicellular organization.

Stem Cell Reports. 2022-4-12

[8]
Synthetic mammalian signaling circuits for robust cell population control.

Cell. 2022-3-17

[9]
Genetic circuit design automation with Cello 2.0.

Nat Protoc. 2022-4

[10]
A Toolbox to Study Tissue Mechanics In Vivo and Ex Vivo.

Methods Mol Biol. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索