Suppr超能文献

非热无定形固体的延性和脆性屈服:超越随机场伊辛模型的平均场范式。

Ductile and brittle yielding of athermal amorphous solids: A mean-field paradigm beyond the random-field Ising model.

作者信息

Parley Jack T, Sollich Peter

机构信息

Institut für Theoretische Physik, <a href="https://ror.org/01y9bpm73">University of Göttingen</a>, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.

Institut für Theoretische Physik, <a href="https://ror.org/01y9bpm73">University of Göttingen</a>, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany and Department of Mathematics, <a href="https://ror.org/0220mzb33">King's College London</a>, London WC2R 2LS, United Kingdom.

出版信息

Phys Rev E. 2024 Oct;110(4-2):045002. doi: 10.1103/PhysRevE.110.045002.

Abstract

Amorphous solids can yield in either a ductile or brittle manner under strain: plastic deformation can set in gradually, or abruptly through a macroscopic stress drop. Developing a unified theory describing both ductile and brittle yielding constitutes a fundamental challenge of nonequilibrium statistical physics. Recently, it has been proposed that, in the absence of thermal effects, the nature of the yielding transition is controlled by physics akin to that of the quasistatically driven random field Ising model (RFIM), which has served as the paradigm for understanding the effect of quenched disorder in slowly driven systems with short-ranged interactions. However, this theoretical picture neglects both the dynamics of, and the elasticity-induced long-ranged interactions between, the mesoscopic material constituents. Here, we address these two aspects and provide a unified theory building on the Hébraud-Lequeux elastoplastic description. The first aspect is crucial to understanding the competition between the imposed deformation rate and the finite timescale of plastic rearrangements: We provide a dynamical description of the macroscopic stress drop, as well as predictions for the shifting of the brittle yield strain and the scaling of the peak susceptibility with inverse shear rate. The second is essential to capture properly the behavior in the limit of quasistatic driving, where avalanches of plasticity diverge with system size at any value of the strain. We fully characterise the avalanche behavior, which is radically different to that of the RFIM. In the quasistatic, infinite-size limit, we find that both models have mean-field Landau exponents, obscuring the effect of the interactions. We show, however, that the latter profoundly affect the behavior of finite systems approaching the spinodal-like brittle yield point, where we recover qualitatively the finite-size trends found in particle simulations. The interactions also modify the nature of the random critical point separating ductile and brittle yielding, where we predict critical behavior on top of the marginality present at any value of the strain. We finally discuss how all our predictions can be directly tested against particle simulations and eventually experiments, and make first steps in this direction.

摘要

非晶态固体在应变作用下可以以延性或脆性方式屈服

塑性变形可以逐渐发生,也可以通过宏观应力降突然发生。建立一个描述延性和脆性屈服的统一理论是非平衡统计物理学的一个基本挑战。最近,有人提出,在没有热效应的情况下,屈服转变的性质由类似于准静态驱动随机场伊辛模型(RFIM)的物理机制控制,该模型一直是理解具有短程相互作用的缓慢驱动系统中淬火无序效应的范例。然而,这种理论图景忽略了介观材料成分的动力学以及弹性诱导的长程相互作用。在这里,我们解决这两个方面的问题,并在Hébraud-Lequeux弹塑性描述的基础上提供一个统一理论。第一个方面对于理解施加的变形速率与塑性重排的有限时间尺度之间的竞争至关重要:我们提供了宏观应力降的动力学描述,以及脆性屈服应变的移动和峰值磁化率随逆剪切速率的标度的预测。第二个方面对于正确捕捉准静态驱动极限下的行为至关重要,在该极限下,塑性雪崩在任何应变值下都随系统尺寸发散。我们全面表征了雪崩行为,这与RFIM的雪崩行为截然不同。在准静态、无限尺寸极限下,我们发现这两个模型都有平均场朗道指数,掩盖了相互作用的影响。然而,我们表明,后者深刻影响了接近类失稳脆性屈服点的有限系统的行为,在该点我们定性地恢复了粒子模拟中发现的有限尺寸趋势。相互作用还改变了区分延性和脆性屈服的随机临界点的性质,我们预测在任何应变值下存在的边缘性之上会出现临界行为。我们最后讨论了如何将我们所有的预测直接与粒子模拟甚至最终的实验进行对比,并朝着这个方向迈出了第一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验