Chen Jin-Fu, Quan H T
School of Physics, <a href="https://ror.org/02v51f717">Peking University</a>, Beijing, 100871, China.
<a href="https://ror.org/03jn38r85">Collaborative Innovation Center of Quantum Matter</a>, Beijing 100871, China.
Phys Rev E. 2024 Oct;110(4):L042105. doi: 10.1103/PhysRevE.110.L042105.
The pursuit of achieving the maximum output power in microscopic heat engines has gained increasing attention in the field of stochastic thermodynamics. We employ the optimal control theory to study Brownian heat engines and determine the optimal heat-engine cycles in a generic damped situation, which were previously known only in the overdamped and the underdamped limits. These optimal cycles include two isothermal processes, two adiabatic processes, and an extra isochoric relaxation process at the high stiffness constraint. Our results determine the maximum output power under realistic control constraints, and also bridge the gap of the optimal cycles between the overdamped and the underdamped limits. Hence, we solve an outstanding problem in the studies of heat engines by employing the optimal control theory to stochastic thermodynamics. These findings bring valuable insights for the design of high-performance Brownian heat engines in experimental setups.
在随机热力学领域,追求微观热机的最大输出功率已受到越来越多的关注。我们运用最优控制理论来研究布朗热机,并确定在一般阻尼情况下的最优热机循环,这些循环此前仅在过阻尼和欠阻尼极限情况下为人所知。这些最优循环包括两个等温过程、两个绝热过程,以及在高刚度约束下的一个额外等容弛豫过程。我们的结果确定了实际控制约束下的最大输出功率,也弥合了过阻尼和欠阻尼极限之间最优循环的差距。因此,我们通过将最优控制理论应用于随机热力学,解决了热机研究中的一个突出问题。这些发现为在实验装置中设计高性能布朗热机带来了宝贵的见解。