<a href="https://ror.org/0087djs12">Max Planck Institute for Dynamics and Self-Organization</a>, Göttingen, Germany and Institute for the Dynamics of Complex Systems, <a href="https://ror.org/01y9bpm73">Georg-August-Universität Göttingen</a>, Göttingen, Germany.
Faculty for Applied Mathematics, Physics, and <a href="https://ror.org/00nggaz43">General Science, Computational Physics for Life Science</a>, <a href="https://ror.org/00nggaz43">Nuremberg Institute of Technology Georg Simon Ohm</a>, Nürnberg, Germany and <a href="https://ror.org/0087djs12">Max Planck Institute for Dynamics and Self-Organization</a>, Göttingen, Germany.
Phys Rev E. 2024 Oct;110(4-1):044207. doi: 10.1103/PhysRevE.110.044207.
Life-threatening cardiac arrhythmias such as ventricular fibrillation are often based on chaotic spiral or scroll wave dynamics which can be self-terminating. In this work, we investigate the influence of conduction heterogeneities on the duration of such chaotic transients in generic models of excitable cardiac media. We observe that low and medium densities of heterogeneities extend the average transient lifetime, while at high densities very long transients, potentially persistent chaos, and periodic attractors occur.
危及生命的心律失常,如心室颤动,通常基于混沌螺旋或涡旋波动力学,这种动力学可以自行终止。在这项工作中,我们研究了兴奋型心脏介质的通用模型中传导异质性对这种混沌瞬变持续时间的影响。我们观察到,低中和中等密度的异质性会延长平均瞬态寿命,而在高密度时,会出现非常长的瞬态、潜在的持续混沌和周期吸引子。