Pereira Wendell J, Conde Daniel, Perron Noé, Schmidt Henry W, Dervinis Christopher, Venado Rafael E, Ané Jean-Michel, Kirst Matias
School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA.
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28223 Madrid, Spain.
J Exp Bot. 2025 Feb 25;76(4):931-949. doi: 10.1093/jxb/erae454.
The extensive use of nitrogen fertilizers has detrimental environmental consequences, and it is essential for society to explore sustainable alternatives. One promising avenue is engineering root nodule symbiosis, a naturally occurring process in certain plant species within the nitrogen-fixing clade, into non-leguminous crops. Advancements in single-cell transcriptomics provide unprecedented opportunities to dissect the molecular mechanisms underlying root nodule symbiosis at the cellular level. This review summarizes key findings from single-cell studies in Medicago truncatula, Lotus japonicus, and Glycine max. We highlight how these studies address fundamental questions about the development of root nodule symbiosis, including the following findings: (i) single-cell transcriptomics has revealed a conserved transcriptional program in root hair and cortical cells during rhizobial infection, suggesting a common infection pathway across legume species; (ii) characterization of determinate and indeterminate nodules using single-cell technologies supports the compartmentalization of nitrogen fixation, assimilation, and transport into distinct cell populations; (iii) single-cell transcriptomics data have enabled the identification of novel root nodule symbiosis genes and provided new approaches for prioritizing candidate genes for functional characterization; and (iv) trajectory inference and RNA velocity analyses of single-cell transcriptomics data have allowed the reconstruction of cellular lineages and dynamic transcriptional states during root nodule symbiosis.
氮肥的广泛使用对环境产生了有害影响,因此社会探索可持续的替代方法至关重要。一个有前景的途径是将根瘤共生工程化,根瘤共生是固氮进化枝中某些植物物种的自然过程,应用于非豆科作物。单细胞转录组学的进展为在细胞水平上剖析根瘤共生的分子机制提供了前所未有的机会。本综述总结了在蒺藜苜蓿、百脉根和大豆单细胞研究中的关键发现。我们强调这些研究如何解决关于根瘤共生发育的基本问题,包括以下发现:(i) 单细胞转录组学揭示了根瘤菌感染期间根毛和皮层细胞中保守的转录程序,表明豆科植物物种间存在共同的感染途径;(ii) 使用单细胞技术对有限型和无限型根瘤的表征支持了将固氮、同化和运输分隔到不同的细胞群体中;(iii) 单细胞转录组学数据能够识别新的根瘤共生基因,并为确定功能表征的候选基因优先级提供了新方法;(iv) 单细胞转录组学数据的轨迹推断和RNA速度分析允许在根瘤共生期间重建细胞谱系和动态转录状态。