State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
Sanya Institute of China Agricultural University, Sanya, 572025, China.
Nat Commun. 2024 Jan 2;15(1):34. doi: 10.1038/s41467-023-44369-7.
The persistent cereal endosperm constitutes the majority of the grain volume. Dissecting the gene regulatory network underlying cereal endosperm development will facilitate yield and quality improvement of cereal crops. Here, we use single-cell transcriptomics to analyze the developing maize (Zea mays) endosperm during cell differentiation. After obtaining transcriptomic data from 17,022 single cells, we identify 12 cell clusters corresponding to five endosperm cell types and revealing complex transcriptional heterogeneity. We delineate the temporal gene-expression pattern from 6 to 7 days after pollination. We profile the genomic DNA-binding sites of 161 transcription factors differentially expressed between cell clusters and constructed a gene regulatory network by combining the single-cell transcriptomic data with the direct DNA-binding profiles, identifying 181 regulons containing genes encoding transcription factors along with their high-confidence targets, Furthermore, we map the regulons to endosperm cell clusters, identify cell-cluster-specific essential regulators, and experimentally validated three predicted key regulators. This study provides a framework for understanding cereal endosperm development and function at single-cell resolution.
持续的谷物胚乳构成了谷物体积的大部分。解析谷物胚乳发育的基因调控网络将有助于提高谷物作物的产量和质量。在这里,我们使用单细胞转录组学来分析玉米(Zea mays)胚乳在细胞分化过程中的发育情况。在从 17022 个单细胞中获得转录组数据后,我们鉴定出 12 个细胞簇,对应于五种胚乳细胞类型,并揭示了复杂的转录异质性。我们描绘了授粉后 6 至 7 天的时间基因表达模式。我们对细胞簇之间差异表达的 161 个转录因子的基因组 DNA 结合位点进行了分析,并通过将单细胞转录组数据与直接 DNA 结合谱相结合,构建了一个基因调控网络,确定了包含转录因子及其高可信度靶基因的 181 个调控模块。此外,我们将调控模块映射到胚乳细胞簇上,确定了细胞簇特异性的必需调控因子,并通过实验验证了三个预测的关键调控因子。本研究为在单细胞分辨率下理解谷物胚乳发育和功能提供了一个框架。