Suppr超能文献

使用深度学习和预测模型理解咬合与颞下颌关节功能。

Understanding Occlusion and Temporomandibular Joint Function Using Deep Learning and Predictive Modeling.

机构信息

Adelaide Dental School, The University of Adelaide, South Australia, Australia.

出版信息

Clin Exp Dent Res. 2024 Dec;10(6):e70028. doi: 10.1002/cre2.70028.

Abstract

OBJECTIVES

Advancements in artificial intelligence (AI)-driven predictive modeling in dentistry are outpacing the clinical translation of research findings. Predictive modeling uses statistical methods to anticipate norms related to TMJ dynamics, complementing imaging modalities like cone beam computed tomography (CBCT) and magnetic resonance imaging (MRI). Deep learning, a subset of AI, helps quantify and analyze complex hierarchical relationships in occlusion and TMJ function. This narrative review explores the application of predictive modeling and deep learning to identify clinical trends and associations related to occlusion and TMJ function.

RESULTS

Debates persist regarding best practices for managing occlusal factors in temporomandibular joint (TMJ) function analysis while interpreting and quantifying findings related to the TMJ and occlusion and mitigating biases remain challenging. Data generated from noninvasive chairside tools such as jaw trackers, video tracking, and 3D scanners with virtual articulators offer unique insights by predicting variations in dynamic jaw movement, TMJ, and occlusion. The predictions help us understand the highly individualized norms surrounding TMJ function that are often required to address temporomandibular disorders (TMDs) in general practice.

CONCLUSIONS

Normal TMJ function, occlusion, and the appropriate management of TMDs are complex and continue to attract ongoing debate. This review examines how predictive modeling and artificial intelligence aid in understanding occlusion and TMJ function and provides insights into complex dental conditions such as TMDs that may improve diagnosis and treatment outcomes with noninvasive techniques.

摘要

目的

人工智能(AI)驱动的预测模型在牙科领域的进步正在超过研究结果的临床转化。预测模型使用统计学方法来预测与 TMJ 动力学相关的规范,补充了锥形束计算机断层扫描(CBCT)和磁共振成像(MRI)等成像方式。深度学习是 AI 的一个子集,有助于量化和分析咬合和 TMJ 功能中的复杂层次关系。本叙述性综述探讨了预测模型和深度学习在识别与咬合和 TMJ 功能相关的临床趋势和关联中的应用。

结果

在解释和量化与 TMJ 和咬合相关的发现并减轻偏见时,关于在 TMJ 功能分析中管理咬合因素的最佳实践仍存在争议。从非侵入性的椅旁工具(如颌轨、视频跟踪和带有虚拟关节的 3D 扫描仪)生成的数据通过预测动态颌运动、TMJ 和咬合的变化提供了独特的见解。这些预测有助于我们理解围绕 TMJ 功能的高度个体化规范,这些规范通常需要在一般实践中解决颞下颌关节紊乱症(TMD)。

结论

正常的 TMJ 功能、咬合和 TMD 的适当管理是复杂的,并且继续引起持续的争论。这篇综述检查了预测模型和人工智能如何帮助理解咬合和 TMJ 功能,并提供了对复杂牙科状况(如 TMD)的深入了解,这些状况可能会通过非侵入性技术改善诊断和治疗结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d23/11576518/0a6fbcc45077/CRE2-10-e70028-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验