Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan.
Institute of Regional Innovation, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan.
Microb Cell Fact. 2024 Nov 19;23(1):313. doi: 10.1186/s12934-024-02590-z.
Lignin is a promising resource for obtaining aromatic materials, however, its heterogeneous structure poses a challenge for effective utilization. One approach to produce homogeneous aromatic materials from lignin involves the application of microbial catabolism, which is gaining attention. This current study focused on constructing a catabolic pathway in Pseudomonas sp. NGC7 to produce vanillate (VA) from aromatic compounds derived from the chemical depolymerization of sulfite lignin.
Alkaline oxidation of sulfite lignin was performed using a hydroxide nanorod copper foam [Cu(OH)/CF]-equipped flow reactor. The flow reactor operated continuously for 50 h without clogging and it yielded a sulfite lignin stream containing acetovanillone (AV), vanillin (VN), and VA as the major aromatic monomers. The catabolic pathway of Pseudomonas sp. NGC7 was optimized to maximize VA production from aromatic monomers in the sulfite lignin stream derived from this oxidation process. Pseudomonas sp. NGC7 possesses four gene sets for vanillate O-demethylase, comprising the oxygenase component (vanA) and its oxidoreductase component (vanB). Among these, the vanA4B4 gene set was identified as the key contributor to VA catabolism. To facilitate the conversion of AV to VA, AV-converting enzyme genes from Sphingobium lignivorans SYK-6 were introduced. The ΔvanA4B4 strain, harboring these AV-converting genes, produced VA from the sulfite lignin stream with 91 mol%. Further disruption of vanA1B1, vanA2B2, vanA3B3, and a vanillin reductase gene, in addition to vanA4B4, and introduction of a 5-carboxyvanillate decarboxylase gene from S. lignivorans SYK-6 to utilize 5-carboxyvanillin and 5-carboxyvanillate from the sulfite lignin stream for VA production achieved a VA yield of 103 mol%.
Developing methods to overcome lignin heterogeneity is essential for its use as a raw material. Consolidating continuous alkaline oxidation of lignin in a Cu(OH)/CF-packed flow reactor and biological funneling using an engineered catabolic pathway of Pseudomonas sp. NGC7 is a promising approach to produce VA for aromatic materials synthesis. NGC7 possesses a higher adaptability to various aromatic compounds generated from the alkaline oxidation of lignin and its natural ability to grow on p-hydroxyphenyl, guaiacyl, and syringyl compounds underscores its potential as a bacterial chassis for VA production from a wide range of lignin-derived aromatic compounds.
木质素是一种有前途的获取芳香材料的资源,但由于其异质结构,其有效利用具有挑战性。从木质素中生产同质芳香材料的一种方法是应用微生物分解代谢,这正受到关注。本研究旨在构建假单胞菌 NGC7 中的分解代谢途径,以从亚硫酸盐木质素的化学解聚产物中生产香草酸(VA)。
采用配备纳米棒铜泡沫[Cu(OH)/CF]的连续流反应器对亚硫酸盐木质素进行碱性氧化。该连续流反应器连续运行 50 小时,没有堵塞,产生了一种含有乙酰香草酮(AV)、香草醛(VN)和 VA 作为主要芳香单体的亚硫酸盐木质素流。优化了假单胞菌 NGC7 的分解代谢途径,以最大限度地从该氧化过程中亚硫酸盐木质素流中的芳香单体中生产 VA。假单胞菌 NGC7 拥有四个包含香草酸 O-去甲基酶的基因簇,包括氧化酶成分(vanA)及其氧化还原酶成分(vanB)。其中,vanA4B4 基因簇被确定为 VA 分解代谢的关键贡献者。为了促进 AV 向 VA 的转化,引入了来自 Sphingobium lignivorans SYK-6 的 AV 转化酶基因。携带这些 AV 转化基因的ΔvanA4B4 菌株从亚硫酸盐木质素流中生产 VA 的产量为 91mol%。此外,除了 vanA4B4 外,还敲除了 vanA1B1、vanA2B2、vanA3B3 和一个香草醛还原酶基因,并引入了来自 S. lignivorans SYK-6 的 5-羧基香草酸脱羧酶基因,以利用亚硫酸盐木质素流中的 5-羧基香草醛和 5-羧基香草酸生产 VA,VA 产量达到 103mol%。
克服木质素异质性是将其用作原料的关键。在 Cu(OH)/CF 填充的连续流反应器中整合木质素的连续碱性氧化,并利用假单胞菌 NGC7 的工程化分解代谢途径进行生物浓缩,是一种很有前途的从木质素衍生的芳香材料合成中生产 VA 的方法。NGC7 对木质素碱性氧化产生的各种芳香化合物具有更高的适应性,并且其天然生长在对羟基苯基、愈创木基和丁香基化合物上,这突出了其作为从各种木质素衍生的芳香化合物中生产 VA 的细菌底盘的潜力。