验证匈牙利版一般口腔健康评估指数(GOHAI)在临床和一般人群中的适用性。

Validation of the Hungarian version of the General Oral Health Assessment Index (GOHAI) in clinical and general populations.

机构信息

Department of Prosthodontics, Faculty of Dentistry, Semmelweis University, Szentkirályi street 47, Budapest, Hungary.

Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Szentkirályi street 47, Budapest, Hungary.

出版信息

BMC Oral Health. 2024 Nov 19;24(1):1402. doi: 10.1186/s12903-024-05198-2.

Abstract

BACKGROUND

COSMIN (Consensus-based Standards for the selection of health Measurement INstruments) provides a framework for selecting and validating patient-reported outcome measurements (PROMs). This study aims to validate the Hungarian version of the GOHAI and, for the first time, to assess its Standard Error of Measurement (SEM), Smallest Detectable Change (SDC), and Measurement Invariance (MI) across general and clinical populations as well as different age groups, following COSMIN guidelines.

MATERIALS AND METHODS

The translation was performed using a forward-backward process. A mixed sample (n = 306) was recruited in Budapest from May 2023 to February 2024, consisting of the general population (45.1%), recruited from health kiosks and a nursing home, and the clinical population (54.9%), sourced from Semmelweis University's care units. The sample was further divided into two age groups: 18-64 years old (54.9%) and 65 + years old (45.1%). GOHAI was administered twice to 108 stable participants. For both the additive score (ADD-GOHAI) and simple count (SC-GOHAI), structural validity and measurement invariance by subgroups were assessed via Confirmatory Factor Analysis (CFA). Internal consistency was evaluated using Cronbach's alpha, and test-retest reliability was measured using the intraclass correlation coefficient (ICC). SEM was calculated using the SEM agreement formula, and SDC using: [Formula: see text]. Convergent and known-group validity were tested against predefined hypotheses for structural validity.

RESULTS

Contrary to a three factor model, a single-factor model showed good fit in all subgroups for both scoring methods, with adequate internal consistency (Cronbach 𝛼: 0.76-0.85). Four of the six hypotheses for convergent validity and all ten hypotheses for known-groups validity supported the predefined criteria. Measurement invariance between clinical and general populations, or by age, was not demonstrated, so GOHAI's different measurement properties should be considered when comparing subpopulations. Test-retest reliability was adequate (ICC: 0.87-0.96). SDC was ≈5 points using ADD-GOHAI and 2-3 points using SC-GOHAI.

CONCLUSION

The Hungarian version of GOHAI demonstrates satisfactory psychometric properties across both general and clinical populations, as well as among both younger and older age groups. While the measurement properties of SC-GOHAI may be more stable between populations, ADD-GOHAI seems more suitable for individual follow-up. However, observed changes must be considered in relation to the measurement error associated with GOHAI.

摘要

背景

COSMIN(健康测量工具选择的共识标准)为选择和验证患者报告的结局测量(PROMs)提供了一个框架。本研究旨在验证 GOHAI 的匈牙利语版本,并首次根据 COSMIN 指南评估其在一般人群和临床人群以及不同年龄组中的测量不变性(MI)、标准误(SEM)和最小可检测变化(SDC)。

材料和方法

翻译采用正向-反向过程。2023 年 5 月至 2024 年 2 月,在布达佩斯采用混合样本(n=306),包括来自健康亭和养老院的一般人群(45.1%)和来自 Semmelweis 大学护理单元的临床人群(54.9%)。该样本进一步分为两个年龄组:18-64 岁(54.9%)和 65 岁以上(45.1%)。GOHAI 对 108 名稳定患者进行了两次评估。对于附加得分(ADD-GOHAI)和简单计数(SC-GOHAI),通过验证性因子分析(CFA)评估结构有效性和亚组的测量不变性。内部一致性采用 Cronbach's alpha 评估,测试-重测信度采用组内相关系数(ICC)评估。SEM 通过 SEM 一致性公式计算,SDC 通过以下公式计算:[公式:见文本]。根据结构有效性的预设假设测试了收敛有效性和已知组有效性。

结果

与三因素模型相反,两种评分方法的所有亚组均显示单因素模型具有良好的拟合度,内部一致性良好(Cronbach's 𝛼:0.76-0.85)。结构有效性的六个收敛有效性假设中的四个和已知组有效性的十个假设中的十个都支持预设标准。临床人群和一般人群之间,或按年龄划分,均未显示出测量不变性,因此在比较亚人群时应考虑 GOHAI 的不同测量特性。测试-重测信度良好(ICC:0.87-0.96)。使用 ADD-GOHAI 时 SDC 约为 5 分,使用 SC-GOHAI 时为 2-3 分。

结论

GOHAI 的匈牙利语版本在一般人群和临床人群以及年轻和老年人群中均表现出令人满意的心理测量特性。虽然 SC-GOHAI 的测量特性在人群之间可能更稳定,但 ADD-GOHAI 似乎更适合个体随访。然而,观察到的变化必须与与 GOHAI 相关的测量误差联系起来考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94f/11575072/c0f83de2ae7b/12903_2024_5198_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索