Dong Zhongyi, Cai Jianhua, Geng Haigang, Ni Bo, Yuan Mengqing, Zhang Yeqian, Xia Xiang, Zhang Haoyu, Zhang Jie, Zhu Chunchao, Wai Choi Un, Regmi Aksara, Chan Cheok I, Yan Cara Kou, Gu Yan, Cao Hui, Zhang Zizhen
Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R. China.
Department of General Surgery, Fudan University Affiliated Huadong Hospital, Shanghai 200040, P.R. China.
iScience. 2024 Oct 22;27(11):111235. doi: 10.1016/j.isci.2024.111235. eCollection 2024 Nov 15.
The prophylactic implantation of biological mesh can effectively prevent the occurrence of stoma-site incisional hernia (SSIH) in patients undergoing stoma retraction. Therefore, our study prospectively established and validated a mixed model, which combined radiomics, stepwise regression, and deep learning for the prediction of SSIH in patients with temporary ileostomy. The mixed model showed good discrimination of the SSIH patients on all cohorts, which outperformed deep learning, radiomics, and clinical models alone (overall area under the curve [AUC]: 0.947 in the primary cohort, 0.876 in the external validation cohort 1, and 0.776 in the external validation cohort 2). Moreover, the sensitivity, specificity, and precision for predicting SSIH were improved in the mixed model. Thus, the mixed model can provide more information for SSIH precaution and clinical decision-making.
生物补片的预防性植入可有效预防造口回缩患者发生造口部位切口疝(SSIH)。因此,我们的研究前瞻性地建立并验证了一种混合模型,该模型结合了放射组学、逐步回归和深度学习来预测临时回肠造口术患者的SSIH。混合模型在所有队列中对SSIH患者均表现出良好的区分能力,其性能优于单独的深度学习、放射组学和临床模型(主要队列的曲线下面积[AUC]总体为0.947,外部验证队列1为0.876,外部验证队列2为0.776)。此外,混合模型在预测SSIH方面的敏感性、特异性和准确性均有所提高。因此,混合模型可为SSIH的预防和临床决策提供更多信息。