Feng Gai-Li, Zhou Wei, Qiao Jin-Ping, Liu Guang-Jian, Xing Guo-Wen
College of Chemistry, Beijing Normal University, China.
Nanoscale. 2024 Dec 19;17(1):418-427. doi: 10.1039/d4nr03871a.
Photodynamic therapy (PDT) and chemodynamic therapy (CDT) are both promising cancer treatments to inhibit tumor cells by generating highly cytotoxic reactive oxygen species (ROS). Herein, we report a novel tumor microenvironment (TME) stimulus-responsive water-soluble glycosylated photosensitizer (BT-TPE@Fe-Lac), which can serve as a high-efficiency antitumor agent by combining PDT and CDT, based on the coordination of Fe with lactosyl bis(2-pyridylmethyl)amine and an AIE luminogen (benzothiazole-hydroxytetraphenylethene, BT-TPE). BT-TPE@Fe-Lac is stable under physiological conditions and selectively targets HepG2 cells asialoglycoprotein receptor (ASGPR)-mediated endocytosis. It rapidly dissociates into AIE-active BT-TPE molecules and a lactosyl ferric(III) complex in the acidic lysosomes of cancer cells. Upon exposure to light, BT-TPE produces O˙ radicals for type I PDT. The ferric(III) complex is reduced to an Fe(II) complex upon depletion of glutathione, which primes the breakdown of endogenous HO within the tumor microenvironment, thus generating highly toxic ˙OH for enhanced CDT. Compared with the monotherapy of PDT or CDT, BT-TPE@Fe-Lac can significantly increase the intracellular ROS levels to induce more tumor cell death under low drug doses and hypoxia-dependent conditions. This strategy leverages the unique properties of the TME to optimize therapeutic outcomes, offering a promising approach for the TME-responsive nanoplatform in advanced cancer therapy.
光动力疗法(PDT)和化学动力疗法(CDT)都是很有前景的癌症治疗方法,通过产生具有高度细胞毒性的活性氧(ROS)来抑制肿瘤细胞。在此,我们报道了一种新型的肿瘤微环境(TME)刺激响应性水溶性糖基化光敏剂(BT-TPE@Fe-Lac),基于铁与乳糖基双(2-吡啶甲基)胺以及一种聚集诱导发光剂(苯并噻唑-羟基四苯基乙烯,BT-TPE)的配位作用,它可以通过结合PDT和CDT作为一种高效的抗肿瘤药物。BT-TPE@Fe-Lac在生理条件下稳定,并通过无唾液酸糖蛋白受体(ASGPR)介导的内吞作用选择性地靶向肝癌细胞(HepG2)。它在癌细胞的酸性溶酶体中迅速解离成具有聚集诱导发光活性的BT-TPE分子和乳糖基铁(III)配合物。光照后,BT-TPE产生用于I型光动力疗法的氧自由基。在谷胱甘肽耗尽后,铁(III)配合物被还原为铁(II)配合物,引发肿瘤微环境中内源性过氧化氢的分解,从而产生高毒性的羟基自由基以增强化学动力疗法。与单独的光动力疗法或化学动力疗法相比,在低药物剂量和缺氧依赖条件下,BT-TPE@Fe-Lac可以显著提高细胞内活性氧水平,诱导更多肿瘤细胞死亡。这种策略利用肿瘤微环境的独特性质来优化治疗效果,为晚期癌症治疗中肿瘤微环境响应性纳米平台提供了一种有前景的方法。
ACS Appl Mater Interfaces. 2025-2-26
ACS Appl Mater Interfaces. 2022-2-2
ACS Appl Mater Interfaces. 2019-10-23
ACS Appl Mater Interfaces. 2022-1-12