一种基于情感脑机接口和静息态脑电图信号检测青少年抑郁症的方法。
A Method for Detecting Depression in Adolescence Based on an Affective Brain-Computer Interface and Resting-State Electroencephalogram Signals.
作者信息
Guan Zijing, Zhang Xiaofei, Huang Weichen, Li Kendi, Chen Di, Li Weiming, Sun Jiaqi, Chen Lei, Mao Yimiao, Sun Huijun, Tang Xiongzi, Cao Liping, Li Yuanqing
机构信息
School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou, 510330, China.
出版信息
Neurosci Bull. 2025 Mar;41(3):434-448. doi: 10.1007/s12264-024-01319-7. Epub 2024 Nov 20.
Depression is increasingly prevalent among adolescents and can profoundly impact their lives. However, the early detection of depression is often hindered by the time-consuming diagnostic process and the absence of objective biomarkers. In this study, we propose a novel approach for depression detection based on an affective brain-computer interface (aBCI) and the resting-state electroencephalogram (EEG). By fusing EEG features associated with both emotional and resting states, our method captures comprehensive depression-related information. The final depression detection model, derived through decision fusion with multiple independent models, further enhances detection efficacy. Our experiments involved 40 adolescents with depression and 40 matched controls. The proposed model achieved an accuracy of 86.54% on cross-validation and 88.20% on the independent test set, demonstrating the efficiency of multimodal fusion. In addition, further analysis revealed distinct brain activity patterns between the two groups across different modalities. These findings hold promise for new directions in depression detection and intervention.
抑郁症在青少年中越来越普遍,会对他们的生活产生深远影响。然而,抑郁症的早期检测常常受到耗时的诊断过程以及缺乏客观生物标志物的阻碍。在本研究中,我们提出了一种基于情感脑机接口(aBCI)和静息态脑电图(EEG)的抑郁症检测新方法。通过融合与情绪和静息状态相关的EEG特征,我们的方法捕捉到了全面的抑郁症相关信息。通过与多个独立模型进行决策融合得出的最终抑郁症检测模型,进一步提高了检测效果。我们的实验涉及40名患有抑郁症的青少年和40名匹配的对照组。所提出的模型在交叉验证中准确率达到86.54%,在独立测试集上准确率达到88.20%,证明了多模态融合的有效性。此外,进一步分析揭示了两组在不同模态下不同的脑活动模式。这些发现为抑郁症检测和干预的新方向带来了希望。
相似文献
J Neural Eng. 2025-6-27
Sensors (Basel). 2025-6-7
Cochrane Database Syst Rev. 2016-7-1
Cochrane Database Syst Rev. 2017-5-23
Cochrane Database Syst Rev. 2004
引用本文的文献
World J Psychiatry. 2025-8-19
本文引用的文献
IEEE J Biomed Health Inform. 2022-7
BMC Med Inform Decis Mak. 2021-11-9
IEEE Trans Neural Netw Learn Syst. 2023-8
IEEE Trans Neural Syst Rehabil Eng. 2021
IEEE Trans Neural Syst Rehabil Eng. 2021
IEEE Trans Neural Syst Rehabil Eng. 2019-5-7
Med Biol Eng Comput. 2019-2-19
Front Hum Neurosci. 2019-1-9