Howard Nathan O A, Williams Alex, Durant Emily, Pressel Silvia, Daniell Tim J, Field Katie J
Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
Curr Biol. 2024 Dec 2;34(23):5484-5493.e3. doi: 10.1016/j.cub.2024.10.028. Epub 2024 Nov 19.
Mucoromycotina "fine root endophyte" (MFRE) fungi are an understudied group of plant symbionts that regularly co-occur with arbuscular mycorrhizal fungi. The functional significance of MFRE in plant nutrition remains underexplored, particularly their role in plant nitrogen (N) assimilation from the variety of sources typically found in soils. Using four N-labeled N sources to track N transfer between MFRE and Plantago lanceolata, applied singly and in tandem, we investigated N source discrimination, preference, and transfer to host plants by MFRE. We traced movement of C from plants to MFRE to determine the impact of N source type on plant carbon (C) allocation to MFRE. We found that MFRE preferentially transferred N derived from glycine and ammonium to plant hosts over that derived from nitrate and urea, regardless of other N sources present. MFRE mycelium supplied with glycine and ammonium contained more plant-derived carbon than those supplied with other N sources. We show that the MFRE directly assimilates and metabolizes organic compounds, retaining C to meet its own metabolic requirements and transferring N to plant hosts. Our findings highlight diversity in the function of endomycorrhizal associations, with potentially profound implications for our understanding of the physiology and ecology of plant-fungal symbioses.
毛霉亚门“细根内生菌”(MFRE)真菌是一类研究较少的植物共生体,常与丛枝菌根真菌共同出现。MFRE在植物营养中的功能意义仍未得到充分探索,尤其是它们在植物从土壤中常见的多种氮源中吸收氮(N)方面的作用。我们使用四种氮标记的氮源,单独和串联使用,来追踪MFRE与披针叶车前之间的氮转移,研究了MFRE对氮源的区分、偏好以及向宿主植物的氮转移。我们追踪了碳从植物到MFRE的移动,以确定氮源类型对植物向MFRE分配碳(C)的影响。我们发现,无论是否存在其他氮源,MFRE优先将来自甘氨酸和铵的氮转移到植物宿主,而不是来自硝酸盐和尿素的氮。与供应其他氮源的MFRE菌丝体相比,供应甘氨酸和铵的MFRE菌丝体含有更多来自植物的碳。我们表明,MFRE直接同化和代谢有机化合物,保留碳以满足自身代谢需求,并将氮转移到植物宿主。我们的研究结果突出了内生菌根共生功能的多样性,对我们理解植物 - 真菌共生的生理学和生态学具有潜在的深远意义。