Suppr超能文献

HKA-Net:适用于临床的深度学习,用于自动测量下肢 X 线摄影中膝骨关节炎评估的髋膝踝角度。

HKA-Net: clinically-adapted deep learning for automated measurement of hip-knee-ankle angle on lower limb radiography for knee osteoarthritis assessment.

机构信息

Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, Boston, MA, 02114, USA.

Department of Biomedical Sciences, Korea University College of Medicine, 73 Goryeodae-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.

出版信息

J Orthop Surg Res. 2024 Nov 20;19(1):777. doi: 10.1186/s13018-024-05265-y.

Abstract

BACKGROUND

Accurate measurement of the hip-knee-ankle (HKA) angle is essential for informed clinical decision-making in the management of knee osteoarthritis (OA). Knee OA is commonly associated with varus deformity, where the alignment of the knee shifts medially, leading to increased stress and deterioration of the medial compartment. The HKA angle, which quantifies this alignment, is a critical indicator of the severity of varus deformity and helps guide treatment strategies, including corrective surgeries. Current manual methods are labor-intensive, time-consuming, and prone to inter-observer variability. Developing an automated model for HKA angle measurement is challenging due to the elaborate process of generating handcrafted anatomical landmarks, which is more labor-intensive than the actual measurement. This study aims to develop a ResNet-based deep learning model that predicts the HKA angle without requiring explicit anatomical landmark annotations and to assess its accuracy and efficiency compared to conventional manual methods.

METHODS

We developed a deep learning model based on the variants of the ResNet architecture to process lower limb radiographs and predict HKA angles without explicit landmark annotations. The classification performance for the four stages of varus deformity (stage I: 0°-10°, stage II: 10°-20°, stage III: > 20°, others: genu valgum or normal alignment) was also evaluated. The model was trained and validated using a retrospective cohort of 300 knee OA patients (Kellgren-Lawrence grade 3 or higher), with horizontal flip augmentation applied to double the dataset to 600 samples, followed by fivefold cross-validation. An extended temporal validation was conducted on a separate cohort of 50 knee OA patients. The model's accuracy was assessed by calculating the mean absolute error between predicted and actual HKA angles. Additionally, the classification of varus deformity stages was conducted to evaluate the model's ability to provide clinically relevant categorizations. Time efficiency was compared between the automated model and manual measurements performed by an experienced orthopedic surgeon.

RESULTS

The ResNet-50 model achieved a bias of - 0.025° with a standard deviation of 1.422° in the retrospective cohort and a bias of - 0.008° with a standard deviation of 1.677° in the temporal validation cohort. Using the ResNet-152 model, it accurately classified the four stages of varus deformity with weighted F1-score of 0.878 and 0.859 in the retrospective and temporal validation cohorts, respectively. The automated model was 126.7 times faster than manual measurements, reducing the total time from 49.8 min to 23.6 sec for the temporal validation cohort.

CONCLUSIONS

The proposed ResNet-based model provides an efficient and accurate method for measuring HKA angles and classifying varus deformity stages without the need for extensive landmark annotations. Its high accuracy and significant improvement in time efficiency make it a valuable tool for clinical practice, potentially enhancing decision-making and workflow efficiency in the management of knee OA.

摘要

背景

准确测量髋膝踝(HKA)角度对于膝关节骨关节炎(OA)管理中的临床决策至关重要。膝关节 OA 通常与内翻畸形有关,即膝关节向内侧移位,导致内侧关节间隙的压力增加和恶化。HKA 角度可以量化这种对线情况,是评估内翻畸形严重程度的关键指标,并有助于指导治疗策略,包括矫正手术。目前的手动方法既费力又耗时,且容易受到观察者间的变异性的影响。由于生成手工解剖标志的复杂过程比实际测量更耗时,因此开发用于 HKA 角度测量的自动化模型具有挑战性。本研究旨在开发一种基于 ResNet 的深度学习模型,该模型可以在不明确解剖标志注释的情况下预测 HKA 角度,并评估其与传统手动方法相比的准确性和效率。

方法

我们开发了一种基于 ResNet 架构变体的深度学习模型,用于处理下肢 X 射线图像并预测 HKA 角度,而无需明确的地标注释。还评估了四个内翻畸形阶段(阶段 I:0°-10°,阶段 II:10°-20°,阶段 III:>20°,其他:外翻或正常对线)的分类性能。使用回顾性队列的 300 名膝关节 OA 患者(Kellgren-Lawrence 分级 3 或更高)对模型进行了训练和验证,通过水平翻转将数据集加倍到 600 个样本,然后进行五折交叉验证。在另外 50 名膝关节 OA 患者的独立队列上进行了扩展的时间验证。通过计算预测 HKA 角度与实际 HKA 角度之间的平均绝对误差来评估模型的准确性。此外,还进行了内翻畸形阶段的分类,以评估模型提供临床相关分类的能力。比较了自动化模型和经验丰富的骨科医生进行的手动测量之间的时间效率。

结果

ResNet-50 模型在回顾性队列中取得了 0.025°的偏置和 1.422°的标准差,在时间验证队列中取得了 0.008°的偏置和 1.677°的标准差。使用 ResNet-152 模型,它在回顾性和时间验证队列中分别以 0.878 和 0.859 的加权 F1 分数准确地分类了四个内翻畸形阶段。自动化模型比手动测量快 126.7 倍,将时间从时间验证队列中的 49.8 分钟减少到 23.6 秒。

结论

提出的基于 ResNet 的模型提供了一种高效、准确的测量 HKA 角度和分类内翻畸形阶段的方法,而无需进行广泛的地标注释。它的高精度和时间效率的显著提高使其成为临床实践的有价值工具,有可能提高膝关节 OA 管理中的决策和工作流程效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6d4/11580353/ce232af11a64/13018_2024_5265_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验