Gaugain Gabriel, Al Harrach Mariam, Yochum Maxime, Wendling Fabrice, Bikson Marom, Modolo Julien, Nikolayev Denys
Institut d'électronique et des technologies du numérique (IETR UMR 6164), CNRS / University of Rennes, 35000 Rennes, France.
Laboratoire Traitement du Signal et de l'Image (LTSI UMR 1099), INSERM / University of Rennes, 35000 Rennes, France.
J Neural Eng. 2025 Feb 5;22(1). doi: 10.1088/1741-2552/ad9526.
. Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for clinical and research applications. Yet, it remains unclear how the stimulation frequency differentially impacts various neuron types. Here, we aimed to quantify the frequency-dependent behavior of key neocortical cell types.. We used both detailed (anatomical multicompartments) and simplified (three compartments) single-cell modeling approaches based on the Hodgkin-Huxley formalism to study neocortical excitatory and inhibitory cells under various tACS intensities and frequencies within the 5-50 Hz range at rest and during basal 10 Hz activity.. L5 pyramidal cells (PCs) exhibited the highest polarizability at direct current, ranging from 0.21 to 0.25 mm and decaying exponentially with frequency. Inhibitory neurons displayed membrane resonance in the 5-15 Hz range with lower polarizability, although bipolar cells had higher polarizability. Layer 5 PC demonstrated the highest entrainment close to 10 Hz, which decayed with frequency. In contrast, inhibitory neurons entrainment increased with frequency, reaching levels akin to PC. Results from simplified models could replicate phase preferences, while amplitudes tended to follow opposite trends in PC.. tACS-induced membrane polarization is frequency-dependent, revealing observable resonance behavior. Whilst optimal phase entrainment of sustained activity is achieved in PC when tACS frequency matches endogenous activity, inhibitory neurons tend to be entrained at higher frequencies. Consequently, our results highlight the potential for precise, cell-specific targeting for tACS.
经颅交流电刺激(tACS)能够对大脑活动进行非侵入性调节,在临床和研究应用方面具有前景。然而,尚不清楚刺激频率如何对不同类型的神经元产生差异影响。在此,我们旨在量化关键新皮质细胞类型的频率依赖性行为。我们使用了基于霍奇金-赫胥黎形式体系的详细(解剖多室)和简化(三室)单细胞建模方法,来研究在静息状态和基础10赫兹活动期间,5至50赫兹范围内不同tACS强度和频率下的新皮质兴奋性和抑制性细胞。第五层锥体神经元(PCs)在直流电下表现出最高的极化率,范围为0.21至0.25毫米,并随频率呈指数衰减。抑制性神经元在5至15赫兹范围内表现出膜共振,极化率较低,尽管双极细胞具有较高的极化率。第五层PC在接近10赫兹时表现出最高的夹带,且随频率衰减。相比之下,抑制性神经元的夹带随频率增加,达到与PC相似的水平。简化模型的结果可以复制相位偏好,而PC中的振幅往往呈现相反趋势。tACS诱导的膜极化是频率依赖性的,揭示了可观察到的共振行为。当tACS频率与内源性活动匹配时,PC中可实现持续活动的最佳相位夹带,而抑制性神经元倾向于在较高频率下被夹带。因此,我们的结果突出了tACS进行精确、细胞特异性靶向的潜力。