Suppr超能文献

尖峰时间依赖可塑性可以解释双部位经颅交流电刺激后的连通性后效。

Spike-timing-dependent plasticity can account for connectivity aftereffects of dual-site transcranial alternating current stimulation.

机构信息

Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Germany; Berlin Institute for Advanced Study, Germany.

Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Germany; Institute of Cognitive Science, University of Osnabrück, Germany.

出版信息

Neuroimage. 2021 Aug 15;237:118179. doi: 10.1016/j.neuroimage.2021.118179. Epub 2021 May 18.

Abstract

Transcranial alternating current stimulation (tACS), applied to two brain sites with different phase lags, has been shown to modulate stimulation-outlasting functional EEG connectivity between the targeted regions. Given the lack of knowledge on mechanisms of tACS aftereffects, it is difficult to further enhance effect sizes and reduce variability in experiments. In this computational study, we tested if spike-timing-dependent plasticity (STDP) can explain stimulation-outlasting connectivity modulation by dual-site tACS and explored the effects of tACS parameter choices. Two populations of spiking neurons were coupled with synapses subject to STDP, and results were validated via a re-analysis of EEG data. Our simulations showed stimulation-outlasting connectivity changes between in- and anti-phase tACS, dependent on both tACS frequency and synaptic conduction delays. Importantly, both a simple network entraining to a wide range of tACS frequencies as well as a more realistic network that spontaneously oscillated at alpha frequency predicted that the largest effects would occur for short conduction delays between the stimulated regions. This finding agreed with experimental EEG connectivity modulation by 10Hz tACS, showing a clear negative correlation of tACS effects with estimated conduction delays between regions. In conclusion, STDP can explain connectivity aftereffects of dual-site tACS. However, not all combinations of tACS frequency and application sites are expected to effectively modulate connectivity via STDP. We therefore suggest using appropriate computational models and/or EEG analysis for planning and interpretation of dual-site tACS studies relying on aftereffects.

摘要

经颅交流电刺激(tACS)施加于相位延迟不同的两个脑区,已被证明可以调节靶向区域之间刺激持续的功能脑电图连通性。鉴于对 tACS 后效机制的了解甚少,很难进一步提高实验的效果大小和降低变异性。在这项计算研究中,我们测试了尖峰时间依赖可塑性(STDP)是否可以解释双位点 tACS 的刺激持续连通性调制,并探索了 tACS 参数选择的影响。两个尖峰神经元群体通过受 STDP 影响的突触耦合,通过对 EEG 数据的重新分析验证了结果。我们的模拟表明,与反相 tACS 相比,同相和反相 tACS 之间存在刺激持续的连通性变化,这取决于 tACS 频率和突触传导延迟。重要的是,一个简单的网络可以适应广泛的 tACS 频率,而一个更现实的网络在 alpha 频率下自发振荡,这两种情况都预测,在刺激区域之间的传导延迟较短的情况下,效果最大。这一发现与 10Hz tACS 对 EEG 连通性调制的实验结果一致,显示出 tACS 效应与估计的区域之间传导延迟之间的明显负相关。总之,STDP 可以解释双位点 tACS 的连通性后效。然而,并非所有的 tACS 频率和应用部位的组合都有望通过 STDP 有效地调节连通性。因此,我们建议在依赖后效的双位点 tACS 研究中使用适当的计算模型和/或 EEG 分析进行规划和解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验