Yamamoto Senri, Afifi Osama Ahmed, Lam Lydia Pui Ying, Takeda-Kimura Yuri, Osakabe Yuriko, Osakabe Keishi, Bartley Laura E, Umezawa Toshiaki, Tobimatsu Yuki
Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
Center for Crossover Education, Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita, 010-8502, Japan.
Plant J. 2024 Dec;120(6):2828-2845. doi: 10.1111/tpj.17148. Epub 2024 Nov 21.
In grass cell walls, ferulic acid (FA) serves as an important cross-linker between cell wall polymers, such as arabinoxylan (AX) and lignin, affecting the physicochemical properties of the cell walls as well as the utilization properties of grass lignocellulose for biorefinering. Here, we demonstrate that hydroxycinnamaldehyde dehydrogenase (HCALDH) plays a crucial role in the biosynthesis of the FA used for cell wall feruloylation in rice (Oryza sativa). Bioinformatic and gene expression analyses of aldehyde dehydrogenases (ALDHs) identified two rice ALDH subfamily 2C members, OsHCALDH2 (OsALDH2C2) and OsHCALDH3 (OsALDH2C3), potentially involved in cell wall feruloylation in major vegetative tissues of rice. CRISPR-Cas9 genome editing of OsHCALDH2 and OsHCALDH3 revealed that the contents of AX-bound ferulate were reduced by up to ~45% in the cell walls of the HCALDH-edited mutants, demonstrating their roles in cell wall feruloylation. The abundance of hemicellulosic sugars including arabinosyl units on AX was notably reduced in the cell walls of the HCALDH-edited mutants, whereas cellulose and lignin contents remained unaffected. In addition to reducing cell wall-bound ferulate, the loss of OsHCALDH2 and/or OsHCALDH3 also partially reduced cell wall-bound p-coumarate and sinapate in the vegetative tissues of rice, whereas it did not cause detectable changes in the amount of γ-oryzanol (feruloyl sterols) in rice seeds. Furthermore, the HCALDH-edited mutants exhibited improved cell wall saccharification efficiency, both with and without alkaline pretreatment, plausibly due to the reduction in cell wall cross-linking FA. Overall, HCALDH appears to present a potent bioengineering target for enhancing utilization properties of grass lignocellulose.
在禾本科植物细胞壁中,阿魏酸(FA)是细胞壁聚合物(如阿拉伯木聚糖(AX)和木质素)之间重要的交联剂,影响细胞壁的物理化学性质以及禾本科植物木质纤维素用于生物精炼的利用特性。在此,我们证明了羟基肉桂醛脱氢酶(HCALDH)在水稻(Oryza sativa)细胞壁阿魏酰化所用FA的生物合成中起关键作用。对醛脱氢酶(ALDHs)进行生物信息学和基因表达分析,鉴定出两个水稻ALDH亚家族2C成员,即OsHCALDH2(OsALDH2C2)和OsHCALDH3(OsALDH2C3),它们可能参与水稻主要营养组织中的细胞壁阿魏酰化。对OsHCALDH2和OsHCALDH3进行CRISPR - Cas9基因组编辑后发现,在HCALDH编辑突变体的细胞壁中,与AX结合的阿魏酸盐含量降低了约45%,证明了它们在细胞壁阿魏酰化中的作用。在HCALDH编辑突变体的细胞壁中,包括AX上阿拉伯糖基单元在内的半纤维素糖的丰度显著降低,而纤维素和木质素含量未受影响。除了减少与细胞壁结合的阿魏酸盐外,OsHCALDH2和/或OsHCALDH3的缺失还部分降低了水稻营养组织中与细胞壁结合的对香豆酸盐和芥子酸盐,而对水稻种子中γ - 谷维素(阿魏酰甾醇)的含量没有引起可检测到的变化。此外,无论有无碱性预处理,HCALDH编辑突变体均表现出提高的细胞壁糖化效率,这可能是由于细胞壁交联FA的减少。总体而言,HCALDH似乎是提高禾本科植物木质纤维素利用特性的一个有力的生物工程靶点。