Walsh J B
Genetics. 1986 Mar;112(3):699-716. doi: 10.1093/genetics/112.3.699.
In a previous paper, I investigated the interactions in a gene family of additive selection and biased gene conversion in a finite population when conversion events are rare. Here I extend my "weak-conversion limit" model by allowing biased interallelic conversion (conversion between alleles at the same locus) of arbitrary frequency and various threshold selection schemes for rare interlocus conversion events. I suggest that it is not unreasonable for gene families to experience threshold fitness functions, and show that certain types of thresholds can greatly constrain the rate at which advantageous alleles are fixed as compared to other fitness schemes, such as additive selection. It is also shown that the double sampling process operating on a gene family in a finite population (sampling over the number of genes in the gene family and over the number of individuals in the population) can have interesting consequences. For selectively neutral alleles that experience interallelic bias, the probability of fixation at each single locus may be essentially neutral, but the cumulative effects on the entire gene family of small departures from neutrality can be significant, especially if the gene family is large. Thus, in some situations, gene families can respond to directional forces that are weak in comparison to drift at single loci.
在之前的一篇论文中,我研究了在有限种群中,当转换事件很少时,加性选择和偏向基因转换的基因家族中的相互作用。在这里,我扩展了我的“弱转换极限”模型,允许任意频率的等位基因间偏向转换(同一位点上等位基因之间的转换)以及针对罕见的基因间转换事件的各种阈值选择方案。我认为基因家族经历阈值适应度函数并非不合理,并表明与其他适应度方案(如加性选择)相比,某些类型的阈值会极大地限制有利等位基因固定的速率。还表明在有限种群中作用于基因家族的双重抽样过程(对基因家族中的基因数量和种群中的个体数量进行抽样)可能会产生有趣的结果。对于经历等位基因偏向的选择性中性等位基因,每个单一位点上的固定概率可能基本呈中性,但与中性的微小偏差对整个基因家族的累积影响可能很大,特别是如果基因家族很大。因此,在某些情况下,与单个位点上的漂变相比,基因家族可以对较弱的定向力做出反应。