Khalaf Mai M, El-Lateef Hany M Abd, Abdou Aly
Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.
Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt.
Chem Biodivers. 2025 Apr;22(4):e202402646. doi: 10.1002/cbdv.202402646. Epub 2024 Nov 30.
This study presents a comprehensive characterization of the Fe(III) (C1) and Co(II) (C2) complexes that were synthesized from the Albendazole (Alb) and Norfloxacin (Nor) ligands. The complexes exhibit remarkable thermal stability, low water solubility, and a non-electrolytic nature, characteristics that enhance their suitability for diverse applications. Conductivity measurements indicate molar conductivities of 9.85 and 8.59 Ω cm mol, confirming their status as neutral molecules. Fourier Transform Infrared (FTIR) spectroscopy reveals significant ligand-metal interactions, marked by shifts in vibrational frequencies that confirm chelation, while Ultraviolet-Visible (UV-Vis) spectroscopy supports the identification of octahedral geometries for both complexes. Magnetic moment assessments align with their electronic configurations, and stoichiometric analysis consistently shows a 1:1:1 ratio, further validated by mass spectrometry. Thermal stability studies highlight anhydrous characteristics and distinct thermal decomposition behaviors, underscoring their structural integrity. Employing Density Functional Theory (DFT) calculations using the B3LYP functional, we evaluate the electronic properties of the ligands and their metal complexes, revealing reduced energy gaps (ΔE) of 2.29 eV for C1 and 2.15 eV for C2, significantly lower than those of the ligands (Alb: 4.61 eV, Nor: 4.17 eV), indicating enhanced reactivity and potential biological activity. Additionally, molecular electrostatic potential (MEP) maps provide insights into charge distributions, suggesting critical regions for interactions with biomolecules. Notably, the results demonstrate that metal coordination significantly enhances antibacterial/anti-fungal activity surpassing both the free ligands and the standard antibiotic Ofloxacin/Fluconazole. Furthermore, the complexes show significant improvement in anti-inflammatory activity by inhibiting protein denaturation more effectively than their ligand counterparts. Molecular docking studies reveal stronger binding affinities and interactions with antimicrobial target proteins 1HNJ and 5IKT, attributed to enhanced hydrophobic interactions and hydrogen bonding. These findings position C1 and C2 as promising candidates for developing effective antimicrobial therapies, highlighting the crucial role of metal ions in enhancing biological reactivity and addressing resistant strains of pathogens.
本研究全面表征了由阿苯达唑(Alb)和诺氟沙星(Nor)配体合成的铁(III)(C1)和钴(II)(C2)配合物。这些配合物具有显著的热稳定性、低水溶性和非电解质性质,这些特性增强了它们在各种应用中的适用性。电导率测量表明摩尔电导率分别为9.85和8.59 Ω cm mol,证实它们为中性分子。傅里叶变换红外(FTIR)光谱揭示了显著的配体 - 金属相互作用,其特征是振动频率的变化证实了螯合作用,而紫外 - 可见(UV - Vis)光谱支持确定两种配合物的八面体几何结构。磁矩评估与其电子构型一致,化学计量分析始终显示1:1:1的比例,质谱进一步验证了这一点。热稳定性研究突出了无水特性和独特的热分解行为,强调了它们的结构完整性。使用B3LYP泛函进行密度泛函理论(DFT)计算,我们评估了配体及其金属配合物的电子性质,发现C1的能隙(ΔE)降低至2.29 eV,C2为2.15 eV,显著低于配体(Alb:4.61 eV,Nor:4.17 eV),表明反应活性增强和潜在的生物活性。此外,分子静电势(MEP)图提供了电荷分布的见解,表明了与生物分子相互作用的关键区域。值得注意的是,结果表明金属配位显著增强了抗菌/抗真菌活性,超过了游离配体和标准抗生素氧氟沙星/氟康唑。此外,配合物通过比其配体更有效地抑制蛋白质变性,在抗炎活性方面有显著改善。分子对接研究揭示了与抗菌靶蛋白1HNJ和5IKT更强的结合亲和力和相互作用,这归因于增强的疏水相互作用和氢键。这些发现使C1和C2成为开发有效抗菌疗法的有希望的候选者,突出了金属离子在增强生物反应性和应对病原体耐药菌株方面的关键作用。