Suppr超能文献

Engineering a Zn-NC electron bridge boosting charge transfer in ZnO/CN Z-scheme heterojunction for efficient photocatalytic disinfection.

作者信息

Rao Shaosheng, Sun Yangyang, Xie Juan, Chen Chenglong, Zhi Chuang, Ma Rong, Liu Qinqin, Yang Juan

机构信息

Department of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.

Department of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.

出版信息

J Colloid Interface Sci. 2025 Feb 15;680(Pt B):332-340. doi: 10.1016/j.jcis.2024.11.134. Epub 2024 Nov 19.

Abstract

Although photocatalytic disinfection can avoid secondary pollution and other shortcomings compared to traditional disinfection methods, its development is seriously hindered by poor charge separation and transfer efficiency. Herein, we design a Zn-NC (single Zn atoms embedded in nitrogen-doped carbon) bridged ZnO/CN Z-scheme heterojunction (ZnO/Zn-NC/CN) with robust interface contact by a multi-interfacial engineering strategy to achieve highly efficient separation and transfer of charge. Experimental and theoretical analyses demonstrate that the tightly integrated interface and excellent electrical conductivity of Zn-NC electron bridges ensure effective transfer of photogenerated charge carriers. Compared to ZnO/CN, the introduction of Zn-NC electron bridges induces charge rearrangement at the interface, generating a strong built-in electric field in the ZnO/Zn-NC/CN Z-scheme heterojunction to facilitate the separation and transfer of photogenerated charge carriers. Furthermore, Zn-NC electron bridges effectively promote the adsorption and activation of oxygen on the surface of ZnO/Zn-NC/CN, enhancing the generation of reactive oxygen species for rapid bacteria elimination in water. Consequently, the ZnO/Zn-NC/CN Z-scheme heterojunction, at a concentration of 100 ppm, achieves 99.9 % antibacterial efficiency against methicillin-resistant Staphylococcus aureus, Staphylococcus aureus, and Escherichia coli at a bacterial concentration of ∼ 10 CFU/mL under AM 1.5G simulated sunlight irradiation for 60 min, which is approximately 1.05 times higher than that of ZnO/CN. Moreover, ZnO/Zn-NC/CN maintains a 99.9 % bactericidal efficiency for natural water treatment using a homemade microreactor, demonstrating its potential for water disinfection.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验