Lebar Blaž, Orehova Maria, Japelj Boštjan, Šprager Ernest, Podlipec Rok, Knaflič Tilen, Urbančič Iztok, Knez Benjamin, Zidar Mitja, Cerar Jure, Mravljak Janez, Žula Aleš, Arčon Denis, Plavec Janez, Pajk Stane
University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia; Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia.
National Institute of Chemistry, Slovenian NMR Centre, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia.
Eur J Pharm Biopharm. 2025 Jan;206:114582. doi: 10.1016/j.ejpb.2024.114582. Epub 2024 Nov 19.
The excipient selection process plays a crucial role in biopharmaceutical formulation development to ensure the long-term stability of the drug product. Though there are numerous options approved by regulatory authorities, only a subset is commonly utilized. Previous research has proposed various stabilization mechanisms, including protein-excipient interactions. However, identifying these interactions remains challenging due to their weak and transient nature. In this study, we present a comprehensive approach to identify such interactions. Using the HT CPMG (Carr-Purcel-Meiboom-Gill) filter experiment we identified interactions of rituximab with certain buffers and amino acids, shedding light on its Fc fragment instability that manifested during the enzymatic cleavage of the antibody. Moreover, chemometric analyses of 2D NMR fingerprints revealed interactions of selected excipients with antibody fragments. Furthermore, molecular dynamics simulations revealed potential interacting hotspots without NMR spectra assignment. Our results highlight the importance of an orthogonal methods approach to uncovering these critical interactions, advancing our understanding of excipient stabilization mechanisms and rational formulation design in biopharmaceutics.
辅料选择过程在生物制药制剂开发中起着关键作用,以确保药品的长期稳定性。尽管有许多辅料已获监管机构批准,但常用的只是其中一部分。先前的研究提出了各种稳定机制,包括蛋白质与辅料的相互作用。然而,由于这些相互作用微弱且短暂,识别它们仍然具有挑战性。在本研究中,我们提出了一种全面的方法来识别此类相互作用。通过使用高温 Carr-Purcel-Meiboom-Gill(CPMG)滤波实验,我们确定了利妥昔单抗与某些缓冲液和氨基酸的相互作用,揭示了其在抗体酶切过程中表现出的Fc片段不稳定性。此外,对二维核磁共振指纹图谱的化学计量学分析揭示了所选辅料与抗体片段的相互作用。此外,分子动力学模拟揭示了潜在的相互作用热点,而无需进行核磁共振光谱归属。我们的结果强调了采用正交方法来揭示这些关键相互作用的重要性,增进了我们对辅料稳定机制以及生物制药中合理制剂设计的理解。