Suppr超能文献

单臂II期临床试验中纳入历史数据的借用方法比较

Comparison of Borrowing Methods for Incorporating Historical Data in Single-Arm Phase II Clinical Trials.

作者信息

Urru Sara, Verbeni Michela, Azzolina Danila, Baldi Ileana, Berchialla Paola

机构信息

Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy.

Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy.

出版信息

Ther Innov Regul Sci. 2025 Jan;59(1):20-30. doi: 10.1007/s43441-024-00723-5. Epub 2024 Nov 21.

Abstract

BACKGROUND

Over the last few years, many efforts have been made to leverage historical information in clinical trials. Incorporating historical data into current trials allows for a more efficient design, smaller studies, or shorter duration and may potentially increase the relative amount of information on efficacy and safety. Despite these advantages, it is crucial to select external data sources appropriately to avoid introducing potential bias into the new study. This is where borrowing methods become useful. We illustrate and compare the latest methods of borrowing historical data in a single-arm phase II clinical trial setting, examining their impact on statistical power and type I error.

METHODS

We implemented static and dynamic versions of the power prior method, incorporating overlapping coefficient and loss functions and meta-analytic predictive priors. These methods were compared with standard and pooling approaches, in which none or all historical data are used.

RESULTS

Dynamic borrowing methods achieve lower type I error inflation than pooling. The power prior approach, integrated with overlapping coefficient, allowed for measuring the similarity of the subjects considering their baseline characteristics, thus the likelihood of the data contains information about both confounders and outcome. Using a discounting function to estimate the power parameter guarantees the similarity of historical information and current trial data.

CONCLUSION

We provided a comprehensive overview of borrowing methods, encompassing frequentist and Bayesian approaches as well as static and dynamic technique, to guide researchers in selecting the most appropriate strategy.

摘要

背景

在过去几年中,人们为在临床试验中利用历史信息付出了诸多努力。将历史数据纳入当前试验可实现更高效的设计、规模更小的研究或更短的持续时间,并可能增加关于疗效和安全性的相对信息量。尽管有这些优势,但适当选择外部数据源以避免在新研究中引入潜在偏差至关重要。这就是借用方法发挥作用之处。我们阐述并比较了在单臂II期临床试验环境中借用历史数据的最新方法,考察它们对统计功效和I型错误的影响。

方法

我们实施了功效先验方法的静态和动态版本,纳入了重叠系数和损失函数以及荟萃分析预测先验。将这些方法与标准方法和合并方法进行比较,标准方法不使用任何历史数据,合并方法使用所有历史数据。

结果

动态借用方法比合并方法导致的I型错误膨胀更低。与重叠系数相结合的功效先验方法能够根据受试者的基线特征衡量其相似性,从而判断数据包含有关混杂因素和结局信息的可能性。使用折扣函数估计功效参数可确保历史信息与当前试验数据的相似性。

结论

我们全面概述了借用方法,涵盖了频率学派和贝叶斯方法以及静态和动态技术,以指导研究人员选择最合适的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验