Suppr超能文献

贝叶斯半参数荟萃分析-预测先验在临床试验中对历史对照数据的借鉴。

Bayesian semiparametric meta-analytic-predictive prior for historical control borrowing in clinical trials.

机构信息

Takeda Pharmaceuticals, Cambridge, Massachusetts, USA.

出版信息

Stat Med. 2021 Jun 30;40(14):3385-3399. doi: 10.1002/sim.8970. Epub 2021 Apr 13.

Abstract

When designing a clinical trial, borrowing historical control information can provide a more efficient approach by reducing the necessary control arm sample size while still yielding increased power. Several Bayesian methods for incorporating historical information via a prior distribution have been proposed, for example, (modified) power prior, (robust) meta-analytic predictive prior. When utilizing historical control borrowing, the prior parameter(s) must be specified to determine the magnitude of borrowing before the current data are observed. Thus, a flexible prior is needed in case of heterogeneity between historic trials or prior data conflict with the current trial. To incorporate the ability to selectively borrow historic information, we propose a Bayesian semiparametric meta-analytic-predictive prior. Using a Dirichlet process mixture prior allows for relaxation of parametric assumptions, and lets the model adaptively learn the relationship between the historic and current control data. Additionally, we generalize a method for estimating the prior effective sample size (ESS) for the proposed prior. This gives an intuitive quantification of the amount of information borrowed from historical trials, and aids in tuning the prior to the specific task at hand. We illustrate the effectiveness of the proposed methodology by comparing performance between existing methods in an extensive simulation study and a phase II proof-of-concept trial in ankylosing spondylitis. In summary, our proposed robustification of the meta-analytic-predictive prior alleviates the need for prespecifying the amount of borrowing, providing a more flexible and robust method to integrate historical data from multiple study sources in the design and analysis of clinical trials.

摘要

在设计临床试验时,通过借用历史对照信息,可以通过减少对照臂所需的样本量来提供更有效的方法,同时提高功效。已经提出了几种通过先验分布将历史信息纳入的贝叶斯方法,例如(修正的)功效先验、(稳健的)荟萃分析预测先验。在利用历史对照借用时,必须指定先验参数,以在观察当前数据之前确定借用的程度。因此,如果历史试验之间存在异质性,或者先验数据与当前试验相冲突,就需要灵活的先验。为了纳入有选择性地借用历史信息的能力,我们提出了一种贝叶斯半参数荟萃分析预测先验。使用狄利克雷过程混合先验可以放宽参数假设,并使模型自适应地学习历史和当前对照数据之间的关系。此外,我们推广了一种用于估计所提出先验的先验有效样本量(ESS)的方法。这可以直观地量化从历史试验中借用的信息量,并有助于根据特定任务调整先验。我们通过在广泛的模拟研究和强直性脊柱炎的 II 期概念验证试验中比较现有方法之间的性能,来说明所提出方法的有效性。总之,我们对荟萃分析预测先验的稳健性改进缓解了预先指定借用程度的需求,为在临床试验的设计和分析中整合来自多个研究来源的历史数据提供了更灵活和稳健的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验