Suppr超能文献

在三个国家生物库的 700217 名参与者中进行代谢组学和基因组学对常见疾病的预测。

Metabolomic and genomic prediction of common diseases in 700,217 participants in three national biobanks.

出版信息

Nat Commun. 2024 Nov 21;15(1):10092. doi: 10.1038/s41467-024-54357-0.

Abstract

Identifying individuals at high risk of chronic diseases via easily measured biomarkers could enhance efforts to prevent avoidable illness and death. Using 'omic data can stratify risk for many diseases simultaneously from a single measurement that captures multiple molecular predictors of risk. Here we present nuclear magnetic resonance metabolomics in blood samples from 700,217 participants in three national biobanks. We built metabolomic scores that identify high-risk groups for diseases that cause the most morbidity in high-income countries and show consistent cross-biobank replication of the relative risk of disease for these groups. We show that these metabolomic scores are more strongly associated with disease onset than polygenic scores for most of these diseases. In a subset of 18,709 individuals with metabolomic biomarkers measured at two time points we show that people whose scores change have different risk of disease, suggesting that repeat measurements capture changes both to health status and disease risk possibly due to treatment, lifestyle changes or other factors. Lastly, we assessed the incremental predictive value of metabolomic scores over existing clinical risk scores for multiple diseases and found modest improvements in discrimination for several diseases whose clinical utility, while promising, remains to be determined.

摘要

通过易于测量的生物标志物识别患有慢性疾病风险较高的个体,可以加强预防可避免疾病和死亡的努力。利用“组学”数据可以从单次测量中同时对多种疾病进行风险分层,该测量方法可捕捉多种风险分子预测因子。在这里,我们展示了来自三个国家生物库的 700,217 名参与者的血液样本中的核磁共振代谢组学。我们构建了代谢组学评分,可识别出导致高收入国家发病率最高的疾病的高风险群体,并在这些群体的疾病相对风险方面显示出一致的跨生物库复制。我们表明,与这些疾病的多基因评分相比,这些代谢组学评分与疾病发病的相关性更强。在具有两次测量的代谢组学生物标志物的 18,709 名个体的子集中,我们表明评分变化的人具有不同的疾病风险,这表明重复测量既可以反映健康状况的变化,也可以反映疾病风险的变化,这可能是由于治疗、生活方式改变或其他因素所致。最后,我们评估了代谢组学评分对多种疾病现有临床风险评分的增量预测价值,发现对于几种疾病的判别能力有适度提高,这些疾病的临床实用性虽然很有希望,但仍有待确定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd06/11582662/a6ac311423ec/41467_2024_54357_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验